Дополнительные устройства
В предшествующих разделах были рассмотрены три основные части фотоаппарата: оптика, системы регистрации и хранения изображения. Разумеется, что электронно-механическая «начинка» камеры содержит и другие детали, назначение большинства из них понятно и интересно только для узких специалистов. Но есть ряд устройств, которые.выполняют понятные для обычного пользователя задачи. Среди них можно выделить систему питания, лампу-вспышку, жидкокристаллический дисплей и интерфейсы подключения.
Дополнительные устройства
Дополнительные устройства
Система питания
Лампа-вспышка
Жидкокристаллические дисплеи
Подключение к компьютеру
Подключение к другой технике
Лампа-вспышка
Порой условия съемки таковы, что оптическая система не в состоянии обеспечить приемлемую экспозицию (с разумным значением выдержки), а чувствительности ПЗС-матрицы не хватает. В таких случаях используется лампа-вспышка (в англоязычной терминологии flash — не путать с памятью аналогичного названия), которой оборудованы практически все современные цифровые фотокамеры. Данное устройство согласовано с аппаратурой экспозамера камеры и обеспечивает импульс света в момент срабатывания затвора камеры. Основная из характеристик встроенной вспышки — ведущее число (guide number), измеряемое в футах либо метрах. Число это приводится для некоторой чувствительности (как правило, ISO 100) и вычисляется умножением диафрагмы на дальность действия. Таким образом, ведущее число определяет дистанцию импульса при разных значениях диафрагменного числа. Изменение чувствительности также влияет на «дальнобойность» вспышки. Среди остальных параметров стоит выделить интервал заряда вспышки.
Из режимов работы данного устройства чаще всего встречаются четыре — автоматический, принудительное срабатывание (используется, если автоматика камеры по каким-то причинам не включает вспышку, а она необходима), выключено (когда вспышка неприменима), а также подавление «эффекта красных глаз», о котором будет рассказано далее. При большой выдержке вспышка может быть синхронизирована «по первой» либо «по второй шторке». Этот термин обозначает, что вспышка выдает импульс в момент открытия либо закрытия затвора, в зависимости от выбора движущиеся объекты будут иметь разный вид на фотографии.
Следует помнить, что использование вспышки приводит к определенной потере глубины кадра, изображение становится более плоским, теряются полутона. Поэтому автоматика камеры должна минимизировать время импульса вспышки и добиваться качественного кадра тщательным подсчетом экспозиции. Автоматика вспышек последнего поколения учитывает не только экспозицию, но также и дистанцию съемки. Если данная функция отсутствует, то при слабой освещенности близкорасположенного объекта есть риск получить «засвеченный» кадр.
Помимо встроенных, существуют также внешние вспышки. Как правило, эти устройства применяются при недостаточной мощности вспышки камеры, а также при необходимости освещения объекта съемки «не в лицо» (то есть сбоку, сверху, отраженным и рассеянным светом и т. д.). В качестве источников питания используются элементы АА — как батареи, так и аккумуляторы.
Рис. 5.3. Внешние вспышки: а — подключение с помощью кабельного гнезда, б — подключение с помощью «башмака»
Для освещения объекта съемки отраженным светом используется поворачивающаяся головка, при этом она, как правило, направляется в потолок под определенным углом. Для рассеянного света применяется зонт из светоотражающего материала, при этом вспышка направлена в противоположную от объекта съемки сторону — в центр зонта.
Самый простой метод использования внешней вспышки — посредством световой ловушки. Данное устройство срабатывает от светового импульса фотоаппарата и включает присоединенную к ловушке вспышку. Минусы такого подхода очевидны, при малой выдержке данная схема неэффективна, а также сохраняется лицевая засветка объекта съемки вспышкой фотоаппарата.
Гораздо больше возможностей предоставляют различные интерфейсы подключения вспышки к фотоаппарату. При этом автоматика камеры синхронизует срабатывание затвора с отправкой управляющего сигнала на вспышку. Существует два основных типа разъемов — гнездо подключения кабеля и так называемый «башмак» (hot shoe). Второй тип подразумевает крепление вспышки непосредственно на камере. Оба эти интерфейса, в свою очередь, подразделяются на одноконтактные и многоконтактные.
Одноконтактные гнездо подключения кабеля (синхроконтакт) и «башмак» являются наиболее стандартизованными.
Чаще всего на любительской цифровой технике устанавливается синхроконтакт, одноконтактный «башмак» встречается реже.
Многоконтактные разъемы, как кабельные гнезда, так и «башмаки», разрабатывались различными фирмами и поэтому несовместимы между собой (форма разъема и количество контактов также зависит от производителя). Многоконтактным (или как еще его называют TTL) «башмаком» оснащены все профессиональные камеры.
Среди любительских моделей считанные экземпляры оборудованы ТТL-«6ашмаком» - как правило, полупрофессиональные фотоаппараты.
В то же время размеры камер не всегда позволяют разместить на их верхней панели многоконтактный «башмак». Для того чтобы максимально использовать возможности внешних вспышек эти модели оснащаются многоконтактными гнездами и подключаются к вспышкам посредством специальных кабелей.
В зависимости от типа подключения и условий съемки вспышка может работать в ручном, автоматическом либо TTL режимах.
В ручном режиме пользователь самостоятельно устанавливает диафрагму камеры на основании ведущего числа вспышки и дистанции съемки. При этом необходимо, чтобы камера поддерживала ручной либо приоритетный по диафрагме режим установки экспозиции (впрочем, практически все камеры с синхроконтак-том поддерживают эти режимы). Данный способ достаточно прост, вспышки этого класса дешевы, и имеется всего один недостаток — долгое время подготовки к съемке.
В автоматическом режиме пользователь устанавливает только диафрагменное число камеры. Затем это значение диафрагмы сообщается автоматике вспышки с помощью различных органов управления (кнопки, переключатели, система меню). В момент съемки лампа вспышки начинает свечение, установленный на вспышке светочувствительный элемент определяет количество отраженного света и по достижении определенного уровня освещенности выключает лампу.
Рис. 5.8. Автоматический режим дополнительной вспышки
При подключении используется как синхроконтакт, так и центральный контакт многоконтактного «башмака», при этом вариант с «башмаком» таит некоторую опасность для фотоаппарата, если вспышка старого образца и не имеет защитной цепи подключения. Этот режим позволяет значительно сократить время
подготовки к съемке, а если пользователь не изменяет значение диафрагмы камеры, то подготовка не требуется вообще.
TTL-режим называется так, потому что при определении освещенности объекта используются пройденный через оптику камеры световой ноток и светочувствительные элементы камеры (от английского «trough the lens» —«через линзы»).
Рис. 5.9. TTL-режим дополнительной вспышки
В этой схеме используется многоконтактный разъем. Через этот разъем камера передает вспышке информацию об экспозиционных параметрах: диафрагме и выдержке, а также значение дистанции съемки. На основе полученных данных вспышка приближенно определяет необходимое значение светового импульса, а при использовании большой выдержки и синхронизации «по второй шторке» — необходимое время задержки включения лампы. В момент съемки светочувствительный элемент камеры определяет освещенность объекта и при достижении необходимого уровня отключает вспышку. TTL-режим полностью избавляет пользователя от необходимости настройки как камеры, так и вспышки.
Большинство вспышек, предназначенные для эксплуатации с камерами, оборудованными вариообъективами, помимо ведущего числа характеризуются также изменяемым углом рассеивания. Для изменения угла рассеивания используется перемещение отражателя внутри вспышки с помощью сервопривода, для
дополнительного эффекта можно поменять рисунок рассеивающего стекла. Данная функция достижима во всех режимах, но наилучшего эффекта можно добиться при использовании многоконтактного разъема и TTL-режима.
Поскольку съемка с использованием внешней вспышки производится, как правило, в условиях плохой освещенности, некоторые модели вспышек оборудованы инфракрасным прожектором. Подсветка с помощью инфракрасного прожектора облегчает работу автофокуса камеры.
Часто при съемке со вспышкой глаза людей (особенно светлые — голубые, серые) приобретают ярко-красный оттенок. Вызывается это отражением света от глазного дна. Для решения проблемы «красных глаз» существует два способа. В первом случае для аккомодации глаза используется предварительное его освещение либо с помощью специальной лампочки, либо посредством серии предварительных световых импульсов низкой мощности, генерируемых самой вспышкой. Минус этого подхода очевиден -человек инстинктивно жмурится, в результате в кадре глаза у него не красные, но просто закрытые. Второе решение заключается в максимальном разнесении оптических осей вспышки и объектива, при этом эффект «красных глаз» значительно уменьшается без дискомфорта для снимаемого человека.
Подключение к другой технике
Из других интерфейсов наиболее распространен видеовыход — разъем, обеспечивающий передачу изображения в формате композитного видеосигнала. С его помощью пользователь может просмотреть фотографии на экране телевизионной техники. Используемые кодировки: PAL и NTSC.
На редких моделях фотоаппаратов встречался параллельный порт, он предназначался для прямого, без использования компьютера, подключения фотопринтера. Как ни странно, подключиться к компьютеру посредством этого порта было невозможно. Кроме того, широкое распространение получили фотопринтеры с гнездами для модулей SmartMedia и CompactFlash. Если и принтер, и камера поддерживали спецификацию DPOF (Digital Print Order Format), то при просмотре кадров на фотоаппарате достаточно было выделить для печати интересующие кадры, вынуть карту памяти и поместить ее в принтер, который печатал выбранные фотографии. Разумеется, компьютер в этом случае тоже не нужен, так что не удивительно, что параллельный порт для подключения фотопринтера скоро «вымер».
Некоторые камеры оснащаются ИК-портом, но в отличие от интерфейса IrDA, данное устройство предназначено для управления камерой с помощью пульта дистанционного управления. Этот пульт, как правило, позволяет управлять фокусным расстоянием объектива и кнопкой затвора, а в режиме просмотра через видеовыход переключаться между кадрами и переходить в режимы индексного и масштабированного просмотра. Профессиональные камеры используют для подключения проводные пульты дистанционного управления.
Подключение к компьютеру
Помимо цены и конструктивных особенностей, любительские и профессиональные камеры отличаются размерами файлов. Профессиональные фотоаппараты с самого начала использовали ПЗС-матрицы с высоким разрешением, изображение записывалось без сжатия, в форматах RAW либо TIFF. Данные обстоятельства вызвали применение памяти высокой емкости, а также высокоскоростных интерфейсов связи с компьютером — таких как SCSI и FireWire (известен также под названием IEEE-1394).
Любительские цифровые камеры были лимитированы по цене, поэтому первоначально комплектовались ЛВС-матрицами невысокого разрешения и ограниченным объемом памяти, достаточным для хранения десятка-другого кадров в формате JPEG. Малые объемы передаваемых данных позволили использовать для коммутации последовательный интерфейс (RS-232).
Подключение со стороны компьютера осуществлялось через стандартный девятиконтактный трапецидальный разъем, разъем камеры на ранних моделях исполнялся тоже многоштырьковым, затем его сменил трехконтактный микроджек.
Использовалась также модификация последовательного интерфейса для инфракрасной связи — спецификация IrDA.
Чаще всего данный интерфейс встречается на портативных компьютерах, и теоретически инфракрасный порт должен был избавить владельцев ноутбуков от необходимости носить соединительные провода. Но в основном порт IrDA устанавливался на камерах, использующих модули CompactFlash. PCMICA-nepe-ходник для этого вида памяти стоит очень недорого, поэтому необходимость инфракрасного порта представляется сомнительной.
На раннем этапе встречались также модели с подключением через параллельный порт (оборудованные памятью высокой емкости), но по сравнению с последовательным интерфейсом скорость увеличивалась незначительно, а необходимость постоянного отключения принтера вела к частым поломкам порта компьютера. Кроме того, разъем на камере получался либо слишком большим, либо слишком хрупким.
С появлением порта USB эксперименты с параллельным портом окончательно прекратились. Новый интерфейс обеспечивает высокую скорость обмена (до 4 Мбайт/с), позволяет подключать камеру без выключения питания, а разъем USB состоит всего из 4 контактов. Некоторые из современных моделей камер «потеряли» разъем для подключения через RS-232, так как размеры файлов современных камер в сочетании с модулями памяти высокой емкости делают практически невозможным использование последовательного порта.
Программное обеспечение для передачи изображений в компьютер можно разделить на три основные группы. Первая группа использует так называемый TWAIN-драйвер — стандартизован-'ный набор функций передачи графической информации между сканером и программой. Приложение обработки изображений, использующее интерфейс TWAIN, предлагает пользователю на выбор несколько сканеров, установленных в системе (среди них наша камера), затем вызывается сам TWAIN-драйвер, пользователь видит уменьшенные изображения отснятых кадров и осуществляет выбор, выбранные кадры переносятся в приложение, где они обрабатываются и сохраняются. Главный недостаток такого способа в многократных передачах данных — из камеры в д-райвер, затем из драйвера в приложение и лишь потом — запись на диск, при этом используются значительные объемы ОЗУ.
Более простое подключение обеспечивает вторая группа ПО. Утилита фотоаппарата выполняется не в виде драйвера TWAIN, с которым работают другие приложения, а в виде отдельной программы, задача которой — связь с камерой и сохранение файлов. Естественно, что такой способ лишен некоторой гибкости, характерной для двух вышеперечисленных методов, зато простота реализации обеспечивает надежную работу в большинстве случаев.
Некоторые из производителей для подключения своих фотоаппаратов разработали довольно любопытный метод. Установка драйвера в системе создает виртуальный дисковый накопитель. После подключения камеры пользователь обращается к этому диску, это обращение перехватывает утилита считывания данных с фотоаппарата и в качестве содержимого диска отображает отснятые кадры (как правило, в виде уменьшенных изображений). Пользователь выбирает интересующие его кадры и копирует их в заранее созданный каталог на компьютере. Правда, у него нет возможности обращаться к камере из оболочек типа Norton Commander — камера является виртуальным диском и не «прописывает» себя в системе в качестве накопителя. Данный подход в полной мере был реализован в ОС Windows 98 и ее продолжении, Windows Me — речь идет о системной папке «Сканеры и камеры». По причине широкого распространения высокоскоростного порта USB производители улучшили данный способ коммутации. После подключения камеры драйвер создает логический диск, и пользователь напрямую обращается к нему, в том
числе и с помощью оболочек типа Norton Commander. При этом он может просматривать отснятые кадры, копировать интересующие его и удалять неудачные точно так же, как и при использовании обычного жесткого диска.
Бывают случаи, когда камера оснащена модулем памяти большой емкости (как правило, приобретенным дополнительно), а из интерфейсов имеет только последовательный. Чтобы ускорить передачу данных, используются различные переходники, описанные в предыдущем разделе. Среди них в последнее время наибольшую популярность приобретают именно адаптеры для USB, создающие виртуальный дисковый накопитель. Адаптер PCMCIA -CompactFlash при всей своей дешевизне может использоваться лишь с портативной техникой, a FlashPath по сравнению с последовательным интерфейсом дает не слишком большой прирост в скорости.
Система питания
Поскольку, в отличие от пленочных фотоаппаратов, функционирование цифровых камер невозможно без электрического тока, надежность системы питания является ее главной характеристикой. От используемых элементов питания (батарей либо аккумуляторов) требуется высокая энергоемкость, в то же время эти элементы должны быть компактными и легкими.
В настоящее время обозначились две основные тенденции, практикуемые производителями камер. В первом варианте, наиболее распространенном, питание камеры рассчитано на 2-4 элемента формата АА (так называемые «пальчиковые батарейки»). Такой подход обеспечивает общедоступность используемых элементов питания, одновременно вынуждая пользователя тратить деньги не только на расходные материалы для принтера (если фотографии печатаются), но и на батареи. Кроме того, новые фотоаппараты потребляют энергии в несколько раз больше, чем старые модели.
Рис. 5.1. Питание от стандартных элементов АА
Рис. 5.2. Питание от специальных аккумуляторов
Другой вариант подразумевает комплектацию камеры аккумулятором, как правило, совместимым с используемыми в портативной бытовой технике литиево-ионными элементами питания. Подобного рода аккумуляторы можно найти в CD-плейерах, видеокамерах и других устройствах. При этом камера оснащается также блоком питания от обычной электросети (если заряд аккумулятора производится внутри фотоаппарата), либо зарядным устройством (это предпочтительнее, так как при этом нет опасности повреждения камеры в случае всплеска напряжения в электросети). Минус такого варианта в сложности поиска сменных элементов питания и их высокой цене.
С развитием аккумуляторной техники появились энергоемкие элементы в формате АА (более 1000 мА/час). Переход с никель-кадмиевой на никель-металл-гидридную технологию позволил значительно уменьшить так называемый «эффект памяти» (частые разряды-заряды малой емкости приводили к тому, что аккумулятор невозможно было зарядить на полную емкость). Кроме того, значительно снизилась стоимость элементов. А в случае когда аккумуляторы разряжены, можно использовать батарейки. Все эти факторы позволяют считать, что ориентация большинства производителей на формат АА оказалась верной.
Стоит ли подключать фотоаппарат к электросети при стационарной работе? Вопрос этот очень важен, так как, в отличие от портативных компьютеров, цифровые камеры не оборудованы фильтрами от скачков напряжения в сети. Поэтому для безопасной эксплуатации необходимо использование качественного сетевого фильтра либо источника бесперебойного питания.
Жидкокристаллические дисплеи
Монохромные символьные ЖК-индикаторы встречаются и в пленочных камерах и служат в основном для показа экспозиционных параметров, а также для настройки дополнительных функций фотоаппарата. Этим же целям служат аналогичные устройства, используемые в цифровой технике. По своему устройству они более всего сходны с дисплеями электронных часов и обеспечивают качественное отображение символьных данных (букв, цифр и пиктограмм) при минимальном энергопотреблении. Размер ЖК-индикатора и количество выводимой информации зависит от сложности и класса фотоаппарата. В последнее время наметилась тенденция к отказу в любительских фотоаппаратах от символьных индикаторов, с перекладыванием части их функций на цветные ЖК-дисплеи.
Эти устройства более сложные и дорогие, тем не менее они стали неотъемлемыми элементами камер, предназначенными для просмотра отснятых кадров. Их размер колеблется от 3,8 до 5 см по диагонали, а разрешающая способность от 65 000 до 150 000 пикселов. Функционально ЖК-дисплеи повторяют экраны портативных компьютеров и подразделяются на два типа: так называемые дисплеи с активной матрицей (active matrix), называемые также дисплеями на тонкопленочных транзисторах (TFT), и экраны двойного сканирования. Если не вдаваться в технические подробности, то экраны двойного сканирования характеризуются крайне низким качеством отображения графической информации, а из их преимуществ можно назвать лишь низкий уровень энергопотребления. Поэтому неудивительно, что ЖК-дисплеи данного типа исчезли практически из всех современных камер. Дисплеи с активной матрицей, помимо размера и количества пикселов, могут также характеризоваться эффективным углом отображения (область, в пределах которой изображение видимо без потери качества), яркостью и контрастностью. Последние параметры в обзорах обычно указываются описательными терминами, например, «экран этой камеры очень яркий» либо «контрастность матрицы обеспечивает удобный просмотр кадров даже при ярком солнце».
Помимо просмотра изображений (и удаления неудачных фотографий), ЖК-дисплей позволяет управлять настройками фотоаппарата посредством системы меню. Для перемещения по пунктам меню и подтверждения выбора служат специальные кнопки. Это одно из основных отличий от пленочных камер — для настройки основных функций 35-мм камеры используют отдельные кнопки и их сочетания. Впрочем, последние модели полупрофессиональных цифровых фотоаппаратов также обзавелись кнопками быстрого доступа к наиболее часто используемым функциям.
Для удобства просмотра с самого начала в цифровых фотокамерах был реализован индексный режим просмотра. В этом режиме на ЖК-дисплей выводятся в уменьшенном виде сразу несколько изображений (как правило, от 4 до 9), при этом пользователь может быстро переключиться на интересующий его кадр. В последнее время появилась также функция масштабирования кадра, когда часть изображения выводится во весь экран и с помощью кнопок управления пользователь перемещает поле обзора по всему кадру. Такой режим позволяет рассмотреть детали, незаметные при обычном просмотре. Масштабирование кадра, как правило, двух- либо трехкратное.
ЖК-дисплей некоторых камер не вмонтирован в заднюю стенку, а крепится шарниром к верхней либо боковой стенке, позволяя вращать экран относительно оси визирования.
При этом обеспечивается возможность съемки из сложных положений (например, поверх голов).
С этой же целью некоторые камеры имеют поворачивающиеся друг относительно друга оптический блок (в нем смонтирован объектив) и основной блок (в нем смонтированы электроника, отсек модулей памяти, батарейный отсек и ЖК-дисплей).
Использование ЖК-дисплея в солнечный день сильно затруднено, так как блики на поверхности экрана мешают разглядеть изображение. Однако существуют способы решения этой проблемы.
Во-первых, существуют компании, специализирующиеся на выпуске специальных козырьков (hood). Эти козырьки надеваются на камеру таким образом, что закрывают поверхность экрана от попадания прямых солнечных лучей.
Наиболее известны мягкие козырьки от фирмы HoodMan, фиксирующиеся с помощью ленты «велькро».
Фирмами Sony и Epson производились камеры, использовавшие для подсветки экрана прозрачное окошко в его верхней части, наиболее известное название данной схемы — Solar Assist. Хотя при просмотре благодаря этому окошку удавалось сэкономить энергию батареек, при съемке (и использовании ЖК-дисплея в качестве видоискателя) проблему бликов Solar Assist не снимал.
Ближе всего к решению задачи с бликами подошла Sony. Ее модель DCS-F505 не имела оптического видоискателя, соответственно, изображение на ЖК-дисплее должно было быть четким при любых условиях. Разработчики этой камеры применили гибридный (hybrid) экран, оснащенный специальным внутренним отражателем. В достаточно яркий день подсветку можно было отключить и вместо бликов в отраженном солнечном свете видеть нормальное изображение.
Активные системы
В быту примером активного охладителя служит обычный холодильник. Однако его конструкция, хотя и обеспечивающая высокий КПД и хорошее охлаждение, неприемлема для цифровой фототехники, даже студийной — в первую очередь из-за размеров и веса.
Для активного охлаждения студийной цифровой техники используются системы Пельтье. Работа этих полупроводниковых термоэлектрических модулей основана па одноименном эффекте.
Эффект Пельтье проявляется при приложении разности потенциалов к двум проводникам, изготовленным из разных материалов. В зависимости от полярности напряжения на стыке этих проводников будет выделяться либо поглощаться тепловая энергия. Происходит это вследствие ускорения либо замедления электронов за счет внутренней контактной разности потенциалов стыка проводников.
Наилучшего результата можно достичь при использовании комбинации полупроводников га-типа ир-типа, в которых теплопог-лощение производится за счет взаимодействия электронов и «дырок». При каскадном объединении удается добиться сильного охлаждения, но при этом наблюдается как поглощение тепла, так и выделение. Поэтому элементы системы Пельтье комбинируются таким образом, чтобы одна сторона охладителя была «горячей», а другая — «холодной».
Для отвода избыточного тепла с «горячей» стороны используются пассивные компоненты — радиаторы, часто дополняемые вентиляторами.
Активные системы на основе эффекта Пельтье позволяют охлаждать ЭОП студийных фотокамер до температур, близких к нулю.
Тепловой шум матрицы снижается в несколько раз и за счет этого значительно расширяется динамический диапазон сенсора. Однако есть ограничение по нижнему пределу температуры, так как при сильном охлаждении возможна конденсация влаги из окружающей атмосферы, которая может вызвать короткое замыкание компонентов камеры.
Студийные камеры
Общие сведения
Приставки к средне- и крупноформатным камерам
Сканирующие приставки
Полнокадровые приставки
Полные камеры
Основные типы
Камеры с расщеплением света
Системы охлаждения
Пассивные системы
Активные системы
Наиболее известные модели
Перспективы
Камеры с расщеплением света
Напомним основные принципы схемы с расщеплением света.
Поскольку в пленочной фотографии аналогов данной схемы просто не существует, требуется разрабатывать конструкцию «с нуля». Объектив, как и в большинстве полных камер, заимствуется с 35-мм байонетных фотоаппаратов. После того как объектив сформировал изображение, с помощью специальной призмы оно делится на три части. Затем для регистрации кадра используются три ЭОП, каждый со своим светофильтром. В результате получаются три изображения (как в мультиэкспозиционных приставках). Складывая их, можно получить полноцветное изображение.
Уже упоминались недостатки данной схемы:
необходимо считывать информацию не с одного, а с трех сенсоров, таким образом, требуется очень высокая скорость передачи данных;
при прохождении призмы-делителя световой поток ослабляется, что ограничивает доступные значения выдержки и диафрагмы;
сигналы со всех трех ЭОП должен быть одинаковыми, в противном случае возможны цветовые искажения.
Для решения этих задач используется ряд технических решений.
Высокая скорость считывания с ЭОП достигается применением буферной памяти большого объема. Кроме того, регулярно разрабатываются более совершенные интерфейсы, обеспечивающие интенсивный обмен информацией.
Для компенсации ослабления светового потока при съемке в студии используется дополнительное осветительное оборудование.
Самой серьезной задачей остается калибровка ПЗС-матриц. Как правило, она производится параллельно с настройкой баланса белого. Для этого используется эталон — матовый плоский объект белого цвета. Если при съемке эталона будут наблюдаться оттенки того или иного цвета, то это значит, что сигнал с соответствующего ЭОП ослаблен либо, наоборот, завышен. Впрочем, поскольку студийный фотоаппарат постоянно подключен к компьютеру, есть возможность соответствующим образом настроить программное обеспечение и компенсировать цветовой баланс.
Основным преимуществом схемы с расщеплением света является возможность съемки живых объектов с неинтерполированным цветом. Широкому распространению этих камер мешает сложность и высокая цена данных устройств, а также отсутствие универсализма — возможности использовать одно и то же оборудование как для цифровой, так и обычной фотосъемки.
Наиболее известные модели
В отличие от фирм, производящих обычные камеры для студийной съемки и сохраняющих статус-кво десятилетиями, в области цифровой техники аналогичного назначения происходили бурные изменения. Некоторые компании, считавшиеся лидерами отрасли 5 лет назад, на сегодняшний день влились в состав других корпораций или же просто исчезли с рынка. Часто революционные новшества, примененные в новой модели, опережали свое время, и рынок не принимал новинку. Однако с прошествием времени наиболее удачные инженерные решения «приживались» и даже становились необходимым компонентом камеры.
Для многих профессиональных фотографов определение «студийная цифровая фотокамера» ассоциируется в первую очередь с продукцией сравнительно небольшой компании Dicomed. И это не случайно, поскольку фотоаппараты этой фирмы во многом опередили свое время, заставляя других производителей форсировать свои разработки.
Dicomed была расположена в городе Бернсвилл, штат Миннеаполис. Ее история началась в 1968 году созданием оборудования для сканирования рентгеновских снимков. В дальнейшем все разработки велись в направлении оцифровки изображения. А в 1993 году англичанину Тревору Хаворту, который был тогда президентом компании, удалось подписать эксклюзивный контракт на лицензионное производство сканирующих приставок BetterLight.
Однако для оперативной съемки требовались сенсоры, регистрирующие кадр целиком, то есть матрицы. Но к тому моменту разрешение устройств данного типа было довольно низким. Решение пришло буквально «с небес».
При эксплуатации разведывательных спутников, фотографирующих вражеские объекты, самым сложным этапом является передача отснятых кадров. Сначала пленка в специальных контейнерах сбрасывалась с орбиты, и имелся риск ее перехвата. Затем разработали автоматические проявочные машины, расположенные прямо на борту спутника, а полученные кадры сканировались и передавались на землю. В конце концов, решено было избавиться и от пленки, а изображение регистрировать с помощью ПЗС-матрицы. Однако для этого необходимо было разработать сенсор с меньшим энергопотреблением и более скромным тепловыделением.
Эту задачу возложили на предприятие Loral-Fairchild — совместное детище одного из крупнейших производителей спутниковых систем (Loral) и гиганта полупроводниковой индустрии Fairchild Semiconductors. После долгих усилий был разработан целый ряд ПЗС-матриц, удовлетворявших заказчиков. Кроме того, качественно новыми стали такие показатели, как разрешение и динамический диапазон.
Однако к концу восьмидесятых «холодная» война пошла на убыль, спутники стали летать реже, а деньги, вложенные в разработку новых ЭОП, надо было как-то возвращать. В итоге часть сенсоров появилась на рынке и довольно быстро нашла покупателей в лице компаний-разработчиков цифрового фотооборудования.
Возникает вопрос — а что же произошло с компанией Loral-Fairchild, благодаря которой произошел столь сильный прогресс в цифровой фотографии? Некоторое время эта компания была частью аэрокосмического концерна Lockheed Martin и называлась Lockheed Martin Fairchild Systems. В 2000 году Fairchild Systems вошла в состав другого аэрокосмического концерна, В АЕ Systems. Среди современных разработок можно назвать 85-мега-пиксельный (9216x9216) сенсор.
Ну а в 1996 году Тревор Хаворт объявил о разработке новой модели Dicomed BigShot. В этой камере планировалось использовать ПЗС-матрицу Loral-Fairchild с разрешением 4096x4096. Предполагалось оснастить камеру ЖК-светофильтром с очень малым циклом смены цвета, что позволило бы снимать живые объекты с неинтерполированным цветом.
Однако разработчики светофильтра не уложились в необходимые сроки. Кроме того, несмотря высокую скорость работы светофильтра, не удалось избежать проблем при съемке со вспышкой — неоднородность цикла свечения давала сильные световые искажения. И уж совсем не представлялось возможным увеличить скорость считывания данных с матрицы, что окончательно ставило крест на перспективе использования BigShot для съемки живых объектов.
В итоге на рынок были представлены не одна, а три модели: монохромный BigShot 1000, мультиэкспозиционный BigShot 3000 (с ЖК-светофильтром, но без буферной памяти и только для съемки неподвижных объектов) и BigShot 4000, самый дорогой (54 тысячи долларов) вариант с интерполяцией цвета.
В процессе эксплуатации вскрылись крупные недочеты конструкции. Напичканная электроникой камера не имела охлаждающей системы, и тепловой шум недопустимо сужал динамический диапазон. Кроме того, высокая стоимость BigShot, обусловленная дороговизной изготовления шестнадцатимегапиксельных сенсоров, отпугивала многих потенциальных клиентов. Dicomed попытался выправить положение выпуском «облегченной» модели Little BigShot, использовавшей шестимегапиксельную матрицу Philips, однако это не спасло компанию от краха, наступившего в 1999 году.
По сравнению с Dicomed, история компании MegaVision не столь продолжительна, она была основана в 1983 году. Однако у обеих фирм есть общее — с самого начала в качестве приоритетного направления были избраны оцифровка и обработка графических изображений. Уже в 1984 году была представлена система обработки графической информации 1024ХМ. Для того чтобы изображение можно было вводить в систему 1024ХМ напрямую, Mega Vision разработала электронную камеру. Однако по своей конструкции она разительно отличалась от современных цифровых фотоаппаратов. Фактически это была телевизионная камера, использующая для регистрации изображения видикон. Единственным отличием было относительно высокое разрешение — 1000 линий.
ПРИМЕЧАНИЕ
Видикон (Vidicon) — передающая телевизионная электронно-лучевая трубка (ЭЛТ). В отличие от обычной ЭЛТ, используемой в телевизорах и мониторах, изображение, проецируемое системой линз на фоточувствительный слой видикона, вызывает изменение потенциалов на поверхности этого слоя. Затем это изменение считывается при проходе луча из электронов, формируемого схемой развертки. В настоящее время в теле- и видеокамерах видикон заменяется ПЗС-матрицами.
В 1986 году разрешение было удвоено и составляло 2000 линий. Камера использовалась совместно с 1024ХМ, вся система называлась Tessera и была первым цифровым фотоаппаратом, применяемым для коммерческой съемки. Однако качество «картинки» было довольно посредственным, мешал узкий динамический диапазон.
Поэтому в 1992 году была создана мультиэкспозиционная сис-. тема Т2, в которой использовалась ставшая ныне традиционной ПЗС-матрица. Разрешение сенсора CCD442A производства Loral-Fairchild составляло 2048x2048. Из других особенностей Т2 следует упомянуть разработанное в 1991 году инженерами MegaVision встроенное в корпус приставки цветовое колесо.
В 1997 году появилась приставка S2, построенная по схеме с интерполяцией цвета. В ней использовалась та же четырехмегапик-сельная ПЗС-матрица, что и в Т2. В 1998 году для S2 был создан комплект портативной съемки BatPac, состоявший из АЦП, цифрового экспонометра, буферной памяти, слота PCMCIA и аккумулятора.
1999 год ознаменовался появлением сразу двух моделей — S3 с интерполяцией цвета и мультиэкспозиционной Т32, базировавшихся на ПЗС-матрице производства Philips (3072x2048). В 2000 году появилась улучшенная версия S3 — S3Pro, чувствительность которой могла достигать 400 единиц ISO.
В дальнейшем разрабатывались только модели с интерполяцией цвета. В 2001 году появилась S4, использующая шестнадцатиме-гапиксельную (4000x4000) ПЗС-матрицу Kodak, а в самом конце 2002 года — S427, сенсором которой служит одиннадцатиме-гапиксельная (4008x2672) матрица Philips.
Еще одной легендой цифровой фотографии по праву считается американская фирма Leaf. В 1992 году ее основатель Боб Каспе представил мультиэкспозиционную приставку Digital Camera Back (DCB), оснащенную четырехмегапиксельной матрицей Loral-Fairchild. Основной «изюминкой» приставки была система охлаждения сенсора, значительно расширявшая динамический диапазон.
Затем появилась модель DCB-II, использовавшая для охлаждения элементы Пельтье, понижавшие температуру ПЗС-матри-цы до 0° по Цельсию. Предыдущая модель не могла охлаждать сенсор ниже температуры воздуха в студии.
В 1994 году Leaf обратила свое внимание на рынок недорогой техники, выпустив полную камеру Lumina своеобразной конструкции. В ней использовались объективы Nikon серии F, а в роли ЭОП выступала не полнокадровая матрица, а сканирующая линейка, обеспечивавшая захват изображения из 2700x3400 точек. Оптимизированная для монтажа на микроскоп модель получила наименование Micro Lumina.
В 1995 году появилась приставка с интерполяцией цвета Catch-Light. Она оснащалась той же матрицей, как и в DCB-II, но ее разрешение составляло 1950x1950. Чтобы улучшить цветопередачу, разработчики заменили в каждой группе из четырех пикселов один из двух зеленых элементов сине-зеленым (teal), в результате увеличилась чувствительность в синей области спектра.
В 1997 году компания Leaf вошла в состав израильского консорциума Scitex. Боб-Каспе покинул фирму, основав собственное предприятие по производству цифровой фототехники Sound Vision, впрочем, без видимого успеха.
В 1998 году Scitex представила первую полностью израильскую разработку — мультиэкспозиционную приставку Leaf Volare, оснащенную шестимегапиксельной матрицей Philips и «визитной карточкой» Leaf — системой охлаждения сенсора с элементами Пельтье.
В 1999 году появилась Leaf Cantare — шестимегапиксельная модель с интерполяцией цвета. В отличие от CatchLight новая приставка использовала классическую Байеровскую схему. В 2000 году произошло слияние концернов Сгео и Scitex. В том же году появилась шестимегапиксельная многофункциональная модификация CantareXY. Для съемки в полевых условиях был разработан комплект On-Location, включавший в себя аккумулятор и интерфейсную карту с АЦП, выполненную в формате PCMCIA.
Последние разработки Сгео используют достижения в области КМОП-матриц. В альянсе с бельгийской фирмой FillFactory удалось разработать шестимегапиксельный (3150x2100) сенсор, чувствительность и динамический диапазон которого являлись пригодными для студийной техники. На базе этой матрицы в 2001 году была создана приставка с интерполяцией цвета C-Most. Осенью 2002 года появилась улучшенная (с большей чувствительностью) версия Valeo 6, а также одиннадцатимегапиксель-ная (4056x2684) Valeo 11. Для просмотра кадров приставки Valeo комплектуются карманным компьютером Leaf DP-67.
Крупнейший европейский производитель студийной техники, датская фирма Phase One, была основана в 1993 году разработчиком барабанных сканеров для полиграфической индустрии. Наряду с BetterLight небольшая скандинавская компания долгие годы является одним из лидеров рынка сканирующих приставок.
Первая модель — сканирующая приставка для крупноформатных камер PhotoPhase FC 70 с разрешением 2500x3600 — вышла в 1994 году. Годом позднее была разработана модификация PhotoPhase vll с вдвое большим разрешением — 5000x7200. В 1996 году Phase One выпустила версию FC 70 с вдвое меньшим временем захвата, назвав ее StudioKit. Одновременно была анонсирована высокопроизводительная серия PovverPhase, предназначенная для использования со среднеформатными камерами и генерировавшая кадры размером 7000x7000 пикселов.
На следующий год StudioKit была адаптирована для использования со среднеформатными камерами, в таком варианте ее разрешение составляло 3500x3500. В свою очередь, PowerPhase была модифицирована для эксплуатации с крупноформатной техникой и обеспечивала разрешение 6000x8400. В 1999 году появилась самая мощная сканирующая приставка Phase One — PowerPhase FX. Разрешение этой модели — 10500x12600. В 2002 году приставка была усовершенствована (в частности, увеличена глубина цвета) и получила обозначение PowerPhase FX+.
В 1998 году Phase One на базе шестимегапикселыюй матрицы Philips создала свою первую полнокадровую приставку с интерполяцией цвета LightPhase. Для уменьшения нагрева сенсора использовался несложный прием — камера включалась только при экспонировании и «засыпала» сразу же после передачи изображения в компьютер. В 2001 году появилась модель Н20, оснащенная шестнадцатимегапиксельной матрицей Kodak.
В 2002 году были анонсированы четыре новых приставки. Н5 представляла собой многофункциональную версию LightPhase — разрешение при трех экспозициях достигало 5300x3056. НЮ базировалась на новой одиннадцатимегапиксельной матрице Philips. Ее модификация Н101 была оптимизирована для использования со средиеформатной камерой Hasselblad HI, спроектированной специально для эксплуатации с цифровыми приставками. Флагманом должна стать Н25, оснащенная ПЗС-матрицей Kodak с разрешением 3992x5312 (при двух экспозициях разрешение кадра 5312x7784). Правда, появится она только в июне 2003 года.
Еще одна датская компания, ColorCrisp, прославилась благодаря тому, что одной из первых оценила перспективность многофункциональных приставок. ColorCrisp A/S была основана в 1994 году одним из крупнейших датских производителей барабанных сканеров, корпорацией Scan View A/S.
Первым изделием стала многофункциональная приставка для крупно- и среднеформатных камер Carnival 2000. В ней использовалась ПЗС-матрица (2000x2000) с чередованием «полосчатых» элементов. Неинтерполированный цвет достигался при четырех экспозициях. В 1998 году появилась модификация Carnival 2020, матрица которой имела чуть большее разрешение - 2048x2048.
В 2000 году была анонсирована Carnival 3020, оснащенная шестимегапиксельной матрицей Philips. Кроме «живого» и мульти-экспозиционного режимов имелась функция микросканирования, при которой после 16 экспозиций разрешение достигало 6144x4096. Охлаждение осуществлялось вентилятором, плюс к этому использовалось автоматическое отключение питания. В том же году ColorCrisp перешла в состав другого крупного датского концерна, Imacon.
В 2001 году появилась модификация Carnival 3020, FlexFrame 3020. В ней сенсор помещался в гибкую рамку для компенсации посторонних вибраций (flex — гибкий, frame — рамка). Кроме того, сервоприводы оснащались двумя пъезоэлементами вместо одного, и шаг смещения матрицы уменьшился с 12 микрон до 6. В том же году была создана FlexFrame 4040, оснащенная шестнадца-тимегапиксельной матрицей Kodak (максимальное разрешение 8192x8192). Новейшей разработкой Imacon является многофункциональная приставка Ixpress, представляющая собой модернизированную для полевой съемки версию FlexFrame 4040.
Немецкая фирма Kontron Elektronik GmbH достаточно давно производила цифровые камеры для разнообразного оборудования. Тем не менее лишь в 1994 году она решила выйти на рынок со своей новинкой, многофункциональной полной камерой ProgRes 3012. Поскольку сенсор был низкого разрешения (512x387), приходилось использовать функцию микросканирования, благодаря этому разрешение достигало 4608x3480.
В 1997 году была представлена новая модель — eyelike DCS, используемая как полная камера либо как приставка к крупноформатной технике. Оснащалась она четырехмегапиксельной матрицей Loral-Fairchild и при микросканировании с 36 экспозициями обеспечивала разрешение 6144x6144.
В том же году Kontron вошла в состав концерна Jenoptik Laser, Optik, Systeme GmbH. До воссоединения Германий под этим названием концерн был известен лишь в США. Во всех остальных странах он назывался Karl Zeiss Jena. После объединения страны марка Karl Zeiss досталась западногерманской фирме, а восточногерманский филиал стал называться Jenoptik.
В 1999 году появилась версия eyelike для среднеформатных камер — eyelike MF (Medium Format — средний формат). Она комплектовалась шестимегапиксельной матрицей Philips и при 16 экспозициях обеспечивала разрешение 6144x4096.
В 2002 году были созданы модели eyelike Precision Мб, МП и М16 с охлаждением матриц элементами Пельтье. Характеристики модификации Мб аналогичны eyelike MF. Модель МИ оборудована одиннадцатимегапиксельным сенсором Philips, при микросканировании разрешение составляет 8000x5344. Самый высокопроизводительный вариант, M16, использует шестнадцатимегапиксельную матрицу Kodak, в режиме микросканирования получается кадр 8160x8160.
Как известно, полевая цифровая фотография появилась благодаря многолетним исследованиям фирмы Kodak в области ПЗС-матриц. И именно разработчики Kodak создали сенсоры с наибольшим разрешением. Впрочем, Kodak производит не только сенсоры, но приставки, их использующие. В частности, на базе шестнадцатимегапиксельной матрицы КАР-16801 СЕ была создана серия DCS Pro Back. Приставки этой серии использовали интерполяцию цветов и в принципе не отличались какими-либо особенными техническими изюминками. Однако у DCS Pro Back имелась другая интересная особенность — они были оборудованы двумя слотами для модулей CompactFlash и цветным ЖК-дисплеем, позволявшим тщательно рассмотреть отснятый материал и при необходимости удалить неудачные кадры. Питание обеспечивал внешний аккумулятор.
Таким образом, разработчикам Kodak удалось наконец совместить в одном изделии качество студийного фотоаппарата и портативность полевой камеры, создав технику нового поколения. Следом появилась DCS Pro Back Plus, которая могла также стыковаться с крупноформатными фотоаппаратами. Последней разработкой является серия DCS Pro Back 645M/645C/645H, предназначенная для эксплуатации с автофокусными среднефор-матными камерами Mamiya, Contax и Hasselblad. Правда, остался только один слот для модулей CompactFlash, зато размеры и вес заметно уменьшились по сравнению с DCS Pro Back/DCS Pro Back Plus. Более того, в габариты приставки удалось даже «втиснуть» аккумулятор, в результате в руках пользователя оказывалась самая натуральная полевая камера.
Общие сведения
Среднеформатные (6x4,5; 6x6; 6x7 и 6x9 см) и крупноформатные (9x12; 13x18 и 18x24 см) фотокамеры отличаются, во-первых, крайним консерватизмом конструкции, а во-вторых, очень высоким качеством изготовления. Поэтому до сих пор можно обнаружить интенсивно эксплуатируемый аппарат, сделанный в семидесятых годах. Фотографы, использующие эту технику, тоже настороженно относятся ко всем новшествам. Тем интереснее тот факт, что первыми цифровую «начинку» обрели как раз студийные камеры.
Основными предпосылками появления цифровых технологий в студийной фотографии являются трудоемкость и дороговизна процесса постановочной съемки. Во-первых, при составлении композиции фотохудожнику приходится истратить не одну кассету для моментальной камеры Polaroid — эти снимки служат для согласования общей концепции кадра с заказчиком. Затем производится съемка на средне- или полноформатную камеру и проявка пленки, в ходе которой выясняется, что цветовые оттенки переданы неверно, угол съемки неудачный и вообще необходима повторная съемка. При этом если реквизит для фотографирования брался в аренду, требуется снова его заказывать.
При использовании студийной цифровой камеры фотограф избавляется от тестовых съемок моментальной камерой, кроме того, нет необходимости тратиться на проявление пленки. Однако не так важна экономия на расходных материалах, как возможность пригласить в студию представителя заказчика и продемонстрировать ему на экране ПК готовый кадр. При этом в отличие от снимка, сделанного аппаратом Polaroid, цветопередача и композиция будут полностью соответствовать окончательному варианту. Если какой-то из параметров кадра не устраивает заказчика, достаточно внести необходимые изменения (переместить объекты, изменить освещение и т. д.) и произвести повторную съемку. В зависимости от типа камеры это может занять от 20 минут до нескольких секунд, разумеется, без учета пересылки изображения в компьютер.
Вместе с тем приобретением цифровой камеры ограничиться невозможно — требуется также как минимум компьютер, сублимационный цветной принтер и прочие периферийные устройства. Все это оборудование стоит достаточно больших денег, за исключением разве что компьютеров, дешевеющих с каждым годом. Тем не менее вложенные средства с лихвой окупаются, так как заказчик всегда готов платить за срочность изготовления и высокое качество.
Как уже было сказано во вступительной части, подавляющее большинство цифровых студийных камер представляют собой приставки к средне- и крупноформатным камерам, устанавливаемые в среднеформатной камере вместо кассеты с пленкой, а в крупноформатной вместо фотопластины. Правда, встречаются и так называемые полные камеры — законченные устройства, включающие в себя как цифровую, так и оптическую подсистемы.
Основные типы
В процессе развития данного направления некоторые производители предлагали на рынке законченные решения — полные камеры, сочетавшие в себе как электронную начинку, так и объектив с затвором. Большинство разработчиков при проектировании устройств использовали байонетную оптику 35-мм камер. Такое решение обусловливалось, с одной стороны, распространенностью объективов, а с другой — малыми габаритами ранних ПЗС-матриц. Использование оптики средне- и крупноформатных камер было бы излишней роскошью.
Такие устройства пользовались довольно устойчивым спросом благодаря невысокой цене. Более того, ряд технических решений (например, схема со смещением матрицы) впервые появился именно на этих типах камер.
Правда, с увеличением разрешения ЭОП появилась потребность применять для формирования изображения оптику «более высокого разбора». А конструкция как среднеформатных, так и крупноформатных камер идеально подходила для использования в сочетании с ними приставок. И, разумеется, любой профессиональный фотограф использует для съемки на пленку именно такую технику. В этих условиях создание полных камер теряло всякий смысл. Впрочем, в большинстве случаев разработчики этих устройств либо уходили с рынка, либо, используя многочисленные наработки, переключались на выпуск приставок.
Однако в некоторых случаях полные камеры нельзя заменить приставками. Например, в случае использования проектировщиками схемы с разделением светового потока.
Перспективы
Сложившася на текущий момент ситуация на рынке выявила несколько закономерностей.
Во-первых, сохраняется устойчивый спрос на сканирующие приставки, обусловленный отработанной конструкцией, огромным разрешением и приемлемой ценой. Скорее всего, развитие этого класса будет исключительно экстенсивным.
Во-вторых, полнокадровые приставки с интерполяцией цвета с подачи Kodak начинают все интенсивнее применяться для полевой съемки. Причем портативный компьютер, неотъемлемый ранее атрибут такого рода работы, все чаще оказывается «лишней деталью».
И, наконец, в-третьих, несмотря на все возрастающую популярность КМОП-матриц среди профессиональных камер, из производителей студийной техники на такой шаг решилась лишь Сrео. Вполне возможно, что в конечном итоге студийные приставки превратятся в своеобразный «заповедник ПЗС-матриц».
Полнокадровые приставки
Полнокадровые приставки для регистрации изображения используют не линейку, а матрицу ПЗС, поэтому они способны зафиксировать кадр целиком.
Однако, как уже упоминалось ранее, элементы ПЗС-матрицы не могут передать цветовую составляющую, поэтому в полевых камерах используется схема с интерполяцией цвета. Подобное решение иногда можно обнаружить и в студийных камерах, правда, с некоторыми доработками. Кроме того, используются и другие подходы.
Приставки к средне- и крупноформатным камерам
По принципу съемки приставки подразделяются на сканирующие и полнокадровые.
Приставки с интерполяцией цвета
Некоторые из приставок к студийным камерам оснащаются ПЗС-матрицами с чередованием элементов, каждый из которых снабжен своим светофильтром. Это позволяет получать изображение за одно экспонирование и производить съемку живых объектов. Данная схема использует интерполяцию (восстановление) цвета и довольно подробно рассмотрена в главе «Электронно-оптические преобразователи». Тем не менее в студийных камерах имеется определенная специфика.
Первые камеры имели не мозаичную, а полосчатую схему окраски элементов, то есть чередовались столбцы зеленого, синего и красного цвета. Это значительно упрощало обсчет полноцветного изображения, однако наблюдались сильные искажения вертикальных линий в кадре.
Поэтому довольно скоро большое распространение получила схема с мозаичным расположением элементов. Как и в полевых камерах, на два зеленых элемента приходилось по одному синему и красному. Расчет полноцветного изображения производился на компьютере, поэтому отличался более тщательной проработкой деталей, чем в полевых камерах.
Другим способом избежать такого неприятного явления, как муар, является нерегулярное, псевдослучайное расположение элементов матрицы. Разумеется, что для корректного расчета цвета программное обеспечение камеры хранит информацию о размещении каждого элемента. Данное решение требует не только больших вычислительных мощностей, но и значительных объемов как оперативной, так и постоянной памяти.
Как и мультиэкспозиционные приставки, устройства с интерполяцией цвета применяются совместно со среднеформатными камерами. По способу крепления к камере эти два типа аналогичны. Что касается сравнительных габаритов, то основной отличительной деталью моделей со сменными светофильтрами является цветовое колесо (кроме моделей с ЖК-светофильтра-ми), значительно увеличивающее размеры либо всей системы в сборе, либо самой приставки.
Приставки со сменными светофильтрами
Наряду со сканирующими устройствами большой популярностью для съемки неподвижных объектов пользуются приставки со сменными светофильтрами. В роли последних используется цветовое колесо, при этом осуществляется троекратное экспонирование (мулътиэкспозиция) с зеленым, синим и красным светофильтром.
Получив значение каждого из основных цветов в данной точке, можно рассчитать точное значение цветового оттенка. Поскольку время при такой схеме съемки расходуется не только на экспонирование каждым из светофильтров, но и на их смену, понятие времени захвата присутствует и для такого типа устройств, при этом полнокадровые приставки «укладываются» в интервал от 5 до 40 секунд максимум, в зависимости от модели. Впрочем, для съемки живых объектов этого тоже недостаточно. Однако для каждой экспозиции можно задействовать импульсный источник света (вспышку), таким образом, фотограф избавляется от необходимости использовать мощное осветительное оборудование.
В отличие от сканирующих устройств, мультиэкспозиционные приставки чаще выпускаются для среднеформатных камер. Размеры наиболее распространенных ПЗС-матриц пока что не достигли значений, пригодных для применения в крупноформатной технике. В некоторых случаях размер ЭОП даже меньше размера среднеформатного кадра, поэтому для определения истинного фокусного расстояния используется специальный увеличивающий коэффициент. Более подробно он будет рассмотрен в главе, посвященной профессиональным полевым камерам.
По внешнему виду полнокадровые приставки похожи на увеличенную в размерах кассету с пленкой, используемую в средне-форматных камерах. Приставка крепится к задней стенке камеры, и ПЗС-матрица располагается там, где в обычных условиях находится кадр пленки. Цветовое колесо может размещаться как перед объективом, так и за ним, в корпусе самой приставки.
Одним из наиболее перспективных путей является замена цветового колеса светофильтрами на основе жидкокристаллических элементов (liquid crystal tunable filter, LCTF). Принцип работы данных устройств основан на взаимной интерференции световых волн в слоях жидкокристаллических элементов, в результате которой включенный фильтр пропускает лучи только определенной длины волн (то есть одного цвета).
Используя элементы с разной пропускающей способностью в многослойной структуре, управляемой электрическими сигналами, можно добиться разделения светового потока на три основных цветовых диапазона: синий, зеленый и красный. Данная схема отличается простотой и надежностью, так как отсутствуют механические компоненты. Скорость переключения ЖК-светофильтра также очень высокая — 50 миллисекунд. Несмотря на такие впечатляющие характеристики, для съемки с импульсными источниками света (при однократном световом выплеске) эта схема малопригодна. Интенсивность свечения вспышки непостоянна, поэтому экспозиции разных цветовых каналов не будут совпадать. Кроме того, слабым звеном является время считывания информации с ПЗС-матрицы. При доведении данного параметра до характеристик, сходных со скоростью переключения ЖК-светофильтра, муль-тиэкспозиционные приставки можно будет использовать для съемки живых объектов при постоянном освещении.
Приставки со смещением матрицы
Схема с интерполяцией цвета получила развитие в многофункциональных (multipurpose) приставках, использующих для съемки живых объектов одно экспонирование, а для высококачественной съемки неподвижных объектов — мультиэкепозицию. При этом во время съемки матрица несколько раз (от двух до четырех) смещается по вертикали и горизонтали на небольшое расстояние, равное шагу размещения элементов.
В результате в каждой точке кадра определяются все три основных цвета и отпадает необходимость в интерполяции. Общее время захвата при этом удается уменьшить до нескольких секунд, хотя для фотографирования «с рук» эта система все-таки не годится. Как и приставки со сменными светофильтрами, многофункциональные устройства позволяют использовать вспышку в мультиэкспозиционном режиме.
Для перемещения матрицы используются прецизионные пъезо-приводы, обеспечивающие микронную точность. Высокая эффективность и надежность данных устройств позволили расширить возможности некоторых приставок функцией микросканирования. При использовании данного режима осуществляется до 36 экспозиций, между которыми матрица совершает циркулирующее перемещение. Результирующий кадр имеет в три раза большее разрешение, как по вертикали, так и по горизонтали.
Практически все приставки со смещением матрицы проектировались на базе моделей с интерполяцией цвета. Поэтому внешний вид этих устройств практически идентичен, так как пъезоприво-ды очень компактны и практически не занимают места.
Из всех приставок только устройства со смещением матрицы обеспечивают и возможность съемки живых объектов с интерполяцией цвета, и функцию фотографирования неподвижных композиций с высоким разрешением и неинтерполированным цветом. Такая гибкость применения привела к большой популярности данной техники среди фотографов, занятых разноплановой съемкой, но не имеющих средств на приобретение двух разных устройств — для фотографирования живых и неподвижных объектов.
Системы охлаждения
Одним из путей повышения динамического диапазона ПЗС-мат-рицы является подавление теплового шума. С этой целью применяются разнообразные схемы отвода тепла от сенсора.
В отличие от полевых камер, массогабаритные характеристики которых сильно ограничивают применение систем охлаждения, студийная фототехника позволяет использовать довольно тяжелые и объемные устройства. Кроме того, при стационарной эксплуатации энергопотребление теплообменник конструкций теоретически не лимитировано.
Системы охлаждения делятся на пассивные и активные.
Пассивные системы охлаждения обеспечивают исключительно отвод избыточного тепла от прибора в охлаждающую среду (атмосферу), при этом охлаждающий элемент служит только передаточным звеном между прибором и воздухом. Поэтому охлаждаемый прибор не может быть холоднее воздуха.
Активные системы за счет потребления энергии (электрической либо химической) понижают температуру своей рабочей области ниже уровня окружающей атмосферы. Данные устройства «вырабатывают холод», при этом в воздух выделяется не только тепло, отводимое от охлаждаемого прибора, но и тепло, создаваемое самой системой охлаждения.
Сканирующие приставки
Процесс съемки с помощью сканирующих приставок очень похож на использование планшетного сканера.
ПЗС-линейка при помощи высокопрецизионного привода (для этого используются, как правило, низкооборотные электродвигатели с редукторами и червячная передача) перемещается в плоскости кадра, передавая строку за строкой формируемого изображения.
ПРИМЕЧАНИЕ
Время захвата (capture time) — промежуток времени, в течение которого происходит полное перемещение ПЗС-линейки сканирующей приставки либо троекратная (для каждого из светофильтров) экспозиция в матричных приставках.
Процесс этот достаточно продолжителен и может достигать 20 минут, поэтому, в отличие от термина время экспонирования, для интервала съемки сканирующей приставкой используется понятие время захвата.
Разумеется, экспонирование при этом тоже происходит. Для этого используется электронный затвор — устройство, рассмотренное в главе «Электронно-оптические преобразователи». Каждый раз, когда линейка останавливается в новой позиции, электронный затвор, используя определенную пользователем выдержку, производит экспонирование. Время экспонирования связано не только с освещенностью объекта, но и с чувствительностью элементов ПЗС-линейки — чем она выше, тем меньшую выдержку может отрабатывать электронный затвор. Интервал между экспонированием зависит не только от скорости перемещения ПЗС-линейки, но и от быстродействия регистра сдвига и аналого-цифрового преобразователя.
Ограничивающим фактором является также максимальная пропускная способность интерфейса связи с устройством хранения информации. В этой роли может выступать как компьютер, так и поставляемый в комплекте с камерой специальный контроллер, к которому подключен жесткий диск, в этом случае скорость считывания данных с АЦП несколько увеличивается. Впрочем, в любом случае необходима буферная память типа RAM, и чем выше разрядность ПЗС-линейки, тем больший размер буфера желателен.
Ранние сканирующие приставки состояли из линейки шириной в один элемент. Таким образом, для получения полноцветного изображения требовалось три прохода. При этом использовалось устройство, переключавшее три светофильтра: синий, красный и зеленый. Конструктивно данное приспособление, называемое цветовым колесом (color wheel), представляло собой диск с тремя вставками из оптического стекла, окрашенного соответствующим цветом. Это колесо размещалось, как правило, перед объективом и поворачивалось необходимым светофильтром к оптике при помощи привода, управляемого сканирующей приставкой.
При использовании цветового колеса время захвата достигало 20 минут. Чтобы уменьшить этот интервал и упростить конструкцию камеры, производители сканирующих приставок повсеместно перешли на трехлинейные матрицы (trilinear arrays), представляющие собой линейку шириной в три элемента. Каждая из строчек была покрыта светофильтром, таким образом, полноцветное изображение получалось за один проход. Разумеется, увеличившееся в три раза количество элементов потребовало двух дополнительных АЦП, а также в три раза более емкий буфер RAM. Зато время захвата для некоторых приставок удалось уменьшить до 41 секунды. Тем не менее для съемки живых объектов такие параметры неприемлемы. Также не подходят импульсные источники света (вспышки), то есть фотограф должен использовать мощные источники постоянного света.
Исторически сложилось так, что сканирующие приставки чаще всего применяются в крупноформатных камерах. Тому есть две причины. Во-первых, размер кадра в этой технике очень большой, поэтому стоимость полнокадровой приставки очень велика даже для аппаратуры такого класса. Во-вторых, крупноформатные фотоаппараты работают только со штатива и потому в основном используются для рекламной постановочной съемки, то есть при переходе на сканирующую приставку область применения данной техники сокращается весьма незначительно.
Однако есть опыт применения данной технологии и в среднефор-матных камерах, как правило, в ранних моделях, для которых важно было сократить общую стоимость устройства. В современных приставках к среднеформатным камерам используются другие технологии.
По внешнему виду сканирующие приставки к крупноформатным камерам напоминают кассету с фотопластиной.
Рабочая зона приставки прозрачная, а за габариты стандартной кассеты выступает блок с приводом ПЗС-линейки и интерфейсная часть с разъемом для подключения довольно объемистого устройства — управляющего модуля. Управляющий модуль, как следует из его названия, координирует работу приставки, кроме того, иногда в нем находится жесткий диск высокой емкости (до 10 Гбайт), служащий для хранения отснятых кадров. Таким образом, фотоаппарат не требует абсолютно никакой доработки и в любой момент может быть использован для съемки на обычные фотопластины.
На данное время сканирующие приставки в состоянии обеспечить кадр с максимальным разрешением за приемлемую цену. Распространенность аксессуаров для крупноформатных камер позволяет вести съемку практически любой сложности. Развитие этого направления возможно за счет увеличения разрешения ПЗС-линеек и скорости сканирования, особых технологических прорывов на этом направлении не предвидится.
Canon
«Зеркалки» Kodak EOS DCS пользовались большим спросом. Поэтому, следуя примеру Nikon, в 2000 году инженеры Canon решили создать цифровой аппарат самостоятельно. Название новой модели, EOS D30, не зря содержало ссылку на знаменитую серию — она разрабатывалась на базе популярной полупрофессиональной камеры EOS-50E.
ПРИМЕЧАНИЕ
Canon — компания основана в 1933 году. Помимо фототехники выпускает широкий ассортимент копировальной техники, принтеров и прочего оборудования.
Отличительной особенностью нового аппарата было использование в качестве ЭОП КМОП-матрпцы. Обычно у таких сенсоров слабая чувствительность и высокий уровень электронного шума, но за счет относительно большого физического размера (15,1x22,7 мм) и технологии «активных пикселов» Canon удалось значительно уменьшить уровень электронного шума и даже усилить сигнал при увеличении чувствительности вплоть до ISO 1600. При разрешении 2160x1440 коэффициент фокусного расстояния составлял 1,6.
Однако для профессиональных пользователей требовалась камера с более высокими характеристиками. Ею стала EOS-ID, разработанная в 2001 году на базе «топ»-модели EOS-IV. В отличие от D30 новый фотоаппарат был оснащен не КМОП-сспсо-ром, а ПЗС-матрицей с разрешением 2496x1662 и коэффициентом фокусного расстояния 1,3. Максимальная чувствительность составляла ISO 3200, минимальная выдержка — 1/16 000 секунды, а «скорострельность» достигала 8 кадров в секунду.
EOS D30 получила развитие в начале 2002 года — это модель D60. Ее сенсор тоже был выполнен по КМОП-технологии и имел такие же габариты, но разрешение было вдвое выше (3072x2048), а вот чувствительность несколько ослабла (ISO 1000).
Рис. 7.8. Canon EOS D60 (разрешение 3072Г2048, коэффициент фокусного
расстояния 1,6)
В конце того же года была модернизирована EOS-ID. Новая камера, EOS-lDs, оборудовалась не ПЗС-матрицей, аодиннадцати-мегапиксельным (4064x2704) КМОП-сенсором. При этом габариты ЭОП полностью совпадали с кадром 35-мм пленки, благодаря чему коэффициентом фокусного расстояния (он был равен 1) можно было пренебречь. Правда, по прочим характеристикам EOS-1 Ds уступала предшественнице. Максимальная чувствительность составляла ISO 1250, минимальная выдержка — 1/8 000 секунды, а скорость непрерывной съемки не превышала трех кадров в секунду.
Contax
Фотоаппараты Contax стали чем-то вроде легенды. Причиной тому имя «Carl Zeiss», красующееся на объективах этих камер.
ПРИМЕЧАНИЕ
Contax — до 1970 года эта торговая марка фотоаппаратов обозначала продукцию Carl Zeiss, точнее, ее филиала Zeiss Ikon Works. Затем, решив сосредоточить все усилия на производстве оптики, Carl Zeiss перепоручила создание фотоаппаратов Contax японской компании Yashica, при этом оставив за собой производство объективов как для камер Contax, так и для продукции Yashica. Первая совместная модель, «зеркалка» высшего класса Contax RTS, вышла на рынок в 1975 году. Изданный момент Contax и Yashica входят в состав концерна Kyocera Optics.
Неудивительно, что для стойких почитателей данной техники был задуман настоящий подарок, имя которому — Contax N Digital.
Базой для этой камеры послужила последняя разработка в области 35-мм техники, Contax N1. Объективы Carl Zeiss обеспечивают высочайшее качество «картинки», а шестимегапиксельная (3040x2008) матрица Philips по своим габаритам совпадает с размером кадра 35-мм пленки, что позволяет полностью раскрыть возможности оптики (коэффициент фокусного расстояния равен 1). При максимальной чувствительности ISO 1600 минимальное значение составляет ISO 25, благодаря этому при ярком освещении можно получать кадры без малейших следов теплового шума.
Fuji
После Nikon к разработке цифровой камеры приступила и Fuji.
ПРИМЕЧАНИЕ
Fuji — как и у компании Kodak, наиболее известна пленка Fuji-Film. Помимо этого широкое распространение получили объективы Fujinon и среднеформатные фотоаппараты.
В качестве базовой модели была избрана недорогая камера Nikon F60. ПЗС-матрица Fuji, выполненная по технологии SuperCCD, согласно рекламным проспектам обеспечивала «шестимегапиксельное качество», хотя реальное разрешение составляло 2304x1536. Коэффициент фокусного расстояния FinePix SI (так называлась новая камера) составлял 1,5, а максимальная чувствительность — ISO 1600. Камера была совместима с оптикой Nikkor, за исключением серий AF-D, AF-G и AF-S.
Зато эти объективы «понимала» появившаяся в начале 2002 года Fuji FinePix S2, так как ее основой был Nikon F80. За исключением разрешения (реально 3024x2016 при декларируемом «две-надцатимегапиксельном качестве» SuperCCD), все остальные характеристики остались прежними.
Профессиональные модели
Общие черты
Основные производители
Kodak
Nikon
Fuji
Canon
Contax
Sigma
Некоторые выводы
Kodak
Любой профессиональный фотограф при упоминании о «зеркал-ках» от Kodak лишь недоуменно пожмет плечами.
ПРИМЕЧАНИЕ
Kodak — торговая марка пленки и фотоаппаратов компании Eastman Kodak. Широкую известность приобрела в связи с распространением сети пунктов проявки и печати, известных под названием «ми-нилаб». Разработала ряд стандартов на фото- и кинопленку.
В общем-то, он будет прав — в «Большую Пятерку Производителей Фотоаппаратов», состоящую из Nikon, Canon, Minolta, Olympus и Pentax (продукция Asahi Optical), фирма Kodak никогда не входила. Однако она одной из первой стала разрабатывать устройства для электронной регистрации изображения -ПЗС-матрицы. А в качестве базовых аппаратов было решено использовать камеры извечно конкурирующих между собой Canon и Nikon.
Первая полевая цифровая камера Kodak называлась DCS-100 (Digital Camera System) и была создана в далеком 1991 году на базе Nikon F3, одной из лучших профессиональных моделей того времени. При разрешении 1280x1024 количество зеленых элементов составляло 75 %, красных и синих, расположенных вертикальными полосками — по 12,5 %. Благодаря этому удалось добиться высокой чувствительности (ISO 800), однако при этом возникли проблемы с расчетом цвета вертикальных линий объектов. Размеры сенсора были 20,5x16,4 мм, поэтому коэффициент фокусного расстояния составлял 1,8. Для сохранения кадров использовалось громоздкое устройство DSU (Digital Storage Unit), весившее 5 кг, связанное кабелем с камерой и имевшее емкость 200 Мбайт. Для просмотра отснятых кадров данный агрегат снабжался монохромным ЖК-дисплеем, правда, с относительно большой диагональю в 10 см.
В 1992 году появилась камера DCS-200, она также базировалась на фотоаппарате Nikon — полупрофессиональной модели F801. Матрица имела большее разрешение (1524x1012) и меньшие физические габариты (14x9,3 мм), а коэффициент увеличения фокусного расстояния составил 2,5 — для широкоугольной съемки DCS-200 была, скажем так, мало приспособлена. «Раскраска» сенсора была традиционной (50 % зеленых пикселов и по 25 % синих и красных), что позволило снимать объекты любой формы, однако чувствительность могла достигать только ISO 400. Информация сохранялась на компактном жестком диске емкостью 80 Мбайт, который располагался в блоке, прикрепленном к нижней панели камеры.
DCS-420, созданная в 1994 году, использовала такую же, как и DCS-200, матрицу, но базой для нее послужил Nikon F90. Данные хранились на сменном жестком диске формата PCMCIA тип III — аналогичные применяются в портативных компьютерах. Батарейные отсеки камеры и цифрового блока были объединены. Годом позднее появилась шестимегапиксельная DCS-460 (3020x2036) с коэффициентом фокусного расстояния 1,28.
Поскольку по популярности фототехника Canon не уступает, а в некоторых случаях и превосходит продукцию Nikon, Kodak решила «приобщить» к цифровой технологии многочисленных энтузиастов этой фирмы. В 1994-1995 годах на базе профессиональной «зеркалки» EOS-IN были созданы три новых камеры Kodak- EOS DCS-1, EOS DCS-3 и EOS DCS-5. Разрешение EOS DCS-1 составляло 3060x2036, EOS DCS-3- 1268x1012, EOS DCS-5 — 1524x1012, коэффициент фокусного расстояния был 1,3, 1,5 и 2,6 соответственно. Отличительной особенностью модели EOS DCS-3 стала чрезвычайно высокая чувствительность — вплоть до ISO 1600. Эти камеры выпускались также с логотипом Canon.
В 1998-1999 годах появились четыре модели, две из которых (DCS-520 и DCS-560) были основаны на Canon EOS-IN, а две другие (DCS-620 и DCS-660) изготавливались на базе новой «топ»-модели Nikon F5. При этом «двадцатки» оснащались матрицей с разрешением 1758x1152 и коэффициентом фокусного расстояния 1,5. Разрешение сенсоров «шестидесяток» составляло 3072x2048, а коэффициент фокусного расстояния — 1,3. Несмотря на мало впечатляющее разрешение, DCS-520 и 620 пользовались устойчивым спросом за счет высоких чувствительности (ISO 1600) и «скорострельности» (серия из 12 кадров со скоростью 3,5 кадра в секунду). DCS-520 и 560 с логотипом Canon именовались EOS D2000 и D3000.
В тот же период Kodak совершила попытку «демократизации» цен. Новый стандарт пленочной фотографии, APS (Advanced Photo System), использовал уменьшенную по сравнению с 35-мм пленкой площадь кадра, 30,2x16,7 мм против 35x23,3 мм. Таким образом, подобрав в качестве базы высококлассную «зеркалку» стандарта APS, можно было использовать сенсоры меньших габаритов (и стоимости). При этом коэффициент фокусного расстояния должен был оставаться в приемлемом диапазоне.
Наиболее подходящим для этой цели фотоаппаратом, по мнению Kodak, являлся Nikon Pronea 6i. На его базе в 1998 году были разработаны DCS-315 с разрешением 1520x1008 и DCS-330 с разрешением 2008x1504. Вследствие использования малогабаритных ПЗС-матриц коэффициент увеличения фокусного расстояния был довольно велик (2,6 у DCS-315 и 1,9 у DCS-330), поэтому «APS-направление» не получило развития.
А вот ПЗС-матрица камеры DCS-620 в 2000 году подверглась модернизации — она стала изготавливаться по технологии BluePlus, в результате чувствительность достигала ISO 6400. Улучшенная модель именовалась DCS-620x, в 2001 году ее снова подвергли обновлению (ввели TTL-расчет баланса белого) и назвали DCS-720x.
Примерно тот же процесс происходил и с DCS-660. В начале 2001 года появился фотоаппарат DCS-760, оснащенный сенсором BluePlus с увеличенной вдвое (ISO 400) чувствительностью и TTL-расчетом баланса белого. А в конце того же года появилась черно-белая модификация DCS-760M.
В 2002 году Kodak анонсировала новую модель «зеркалки», DCS-14п, разрешение которой составляет 4536x3024, то есть 14 мегапикселов. Размер нового сенсора, выполненного по КМОП-тех-нологии, полностью совпадает с габаритами кадра 35-мм пленки, поэтому про коэффициент фокусного расстояния можно забыть. Чувствительность составляет ISO 640. DCS-14n представляет собой не просто «крышку с матрицей» для стандартного Nikon F5, а полностью новый корпус, разработанный инженерами Kodak на базе F80 с элементами конструкции F5. Благодаря этому новая камера выглядит не таким уродливым кирпичом, как предыдущие модели серии DCS. Обеспечивается совместимость со всей оптикой Nikon, рассчитанной на байонет F, а также со вспышками Nikon SpeedLight SB-80DX/28DX/50DX.
Некоторые выводы
Рассматривая современные профессиональные камеры, можно сделать несколько выводов.
Прежнее деление моделей на «скорострельные» и «многомегапиксельные», как у Kodak x20/x60 и Nikon D1H/DIX, становится все менее актуальным. На данный момент деление происходит по классу базовой камеры. Например, к камерам высшего класса можно отнести Kodak DCS-760, Nikon D1X и Canon EOS1-D. Модели среднего класса, Canon EOS D30/D60, Fuji FinePix S1/S2, а также Nikon D-100, при чуть менее впечатляющих характеристиках более доступны по цене.
Несмотря на то что новые любительские камеры продолжают «наступать на пятки» классическим «зеркалкам» по всем параметрам, скорого «обвала цен» на профессиональную технику ожидать не приходится. Точно так же вряд ли стоит надеяться на уход «зеркалок» с рынка. Тому причиной несколько обстоятельств.
Практически для любых задач можно подобрать необходимый объектив — либо высококачественный и дорогой, либо попроще и подешевле. Опять-таки, на фоне высокой стоимости высококлассной оптики цена даже цифровой «коробки» уже не кажется «заоблачной».
Разрешение матриц продолжает расти, а вот разрешающей способности оптики любительских камер в некоторых случаях уже не хватает. А у зеркальных камер по этому параметру определенный резерв есть даже у недорогих объективов.
Кроме того, с определенного момента рост разрешения неизбежно будет связан с увеличением линейных размеров сенсоров. А ведь большинство ПЗС-матриц до сих пор не «доросло» до размеров кадра 35-мм пленки кадра, то есть имеется довольно значительный резерв по габаритам ЭОП. Кроме того, разработчики КМОП-матриц кровно заинтересованы в повышении спроса на сенсоры больших габаритов, ведь у КМОП-матриц с увеличением размеров растет и процент светочувствительной площади ЭОП.
Наконец, немаловажным является эргономический фактор. Разработчики любительской техники в своем стремлении миниатюри-зировать камеры доходят порой до абсурда. Насколько удобно будет взрослому мужчине с крупными руками фотографировать аппаратом величиной с колоду карт? А вот дизайн «зеркалок» совершенствовался десятилетиями. И пользователь, подержавший ладно сидящий в руке Canon EOS, уже по-другому будет относиться к угловатому Canon PowerShot.
Nikon
Как уже было упомянуто, первые цифровые фотоаппараты компания Kodak разработала в сотрудничестве с Nikon.
ПРИМЕЧАНИЕ
Nikon —торговая марка фотоаппаратов, выпускаемых фирмой Nippon Kogaku. Фирма основана в 1917 году, известна также объективами, выпускаемыми под торговой маркой Nikkor. Изданный момент Nikon входит в состав концерна Mitsubishi.
Однако в 1995 году, после появления серии Kodak EOS DCS, базировавшейся на фотоаппаратах Canon, фирма Nikon решила самостоятельно создать цифровую фотокамеру. Для этого потребовался партнер с опытом производства ПЗС-матриц, им стала корпорация Fuji.
Несмотря на приличное разрешение (1280x1000), размер матриц Fuji не превышал 6,6x8,8 мм и использовать их в обычной «зеркалке» было просто невозможно. Поэтому Nikon, подключив весь свой научно-технический потенциал, разработала систему ROS (Reduction Optical System). Она представляла собой сочетание линз, на вход которых поступала «картинка» с объектива, рассчитанного на кадр 35-мм пленки. На выходе из системы ROS изображение уменьшалось до размера ПЗС-матрицы.
При использовании системы оптического масштабирования (примерно так переводится с английского ROS) фокусное расстояние, указанное на объективе, полностью соответствовало реальному значению. Кроме того, благодаря высокой концентрации светового потока чувствительность достигала ISO 800-1600. Имелись и недостатки, в частности, нельзя было использовать короткофокусные объективы (те, что меньше 28 мм), а эффективная диафрагма не превышала f/6,7.
Корпус нового фотоаппарата, хотя и имел в своей основе модель Nikon F4, из-за дополнительной оптики ROS сильно вырос «в глубину» и представлял собой практически новую конструкцию. Всего в 1995-96 годах было выпущено четыре модификации - Nikon E2/E2s и E2N/E2Ns (Fujifilm DS-505/DS-515 и DS-505A/DS-515A). Между собой они отличались объемом буферной памяти и максимальной чувствительностью (ISO 3200 у последних моделей). В 1998 году появились модернизированные версии E3/E3s (Fujifilm DS-560/DS-565), в которых эффективная диафрагма достигала f/4,8. Впрочем, данная схема оказалась тупиковой и дальнейшего применения не имела.
В итоге в 1999 году появился Nikon D1, базой для которого послужил Nikon F100 (аппарат, кстати, «ниже рангом», чем F5). ПЗС-матрица с разрешением 2000x1312 обладала чувствительностью до ISO 1600, а ее довольно крупные (23,7x15,6 мм) габариты обусловливали вполне приемлемый коэффициент фокусного расстояния 1,5. Уступая серии Kodak DCS по основным характеристикам, D1 превосходил ее по доступности, так как стоил дешевле. Имелась и техническая «изюминка» — высокая (до 4,5 кадров в секунду) «скорострельность».
В 2001 году были выпущены модернизированные версии этой камеры. D1X оснащалась матрицей из 4028x1324 точек, а соотношение вертикального и горизонтального разрешений было нестандартным — 3x1. Однако физический размер матрицы не изменился и коэффициент фокусного расстояния остался прежним — 1,5. Дело в том, что пикселы были прямоугольной формы и в два раза уже, а поскольку количество строк ЭОП не увеличилось, интервал считывания кадра допускал съемку со скоростью 3 кадра в секунду. Но вследствие прямоугольной формы элементов матрицы изображение оказывалось сильно растянутым по горизонтали, из-за чего после интерполяции по вертикали разрешение составляло 3008x1960. D1H отличалась от предшественницы лишь повышенной (до 5 кадров в секунду) «скорострельностью».
В начале 2002 года появилась D100, основанная на недорогой «зеркалке» F80. В ней использовалась ПЗС-матрица SONY с разрешением 3008x2000, коэффициент фокусного расстояния которой составил 1,5, а чувствительность достигала ISO 1600. Благодаря низкой цене базовой модели и традиционно дешевой матрице удалось добиться довольно «демократической» цены.
Рис. 7.7. Nikon D1H (разрешение 2000X1312, коэффициент фокусного расстояния 1,5)
Кроме того, Nikon анонсировала новую серию объективов DX Nikkor. Они формируют изображение уменьшенной площади, оптимизированное для цифровых «зеркалок», коэффициент фокусного расстояния которых 1,5 и выше. При этом широкоугольный объектив DX 18-35 мм легче и компактнее обычного, а самое главное — стоит дешевле.
Общие черты
В данной главе будут рассматриваться профессиональные камеры — техника дорогая и менее распространенная, чем любительские модели. В то же время если проводить аналогию с автомобилями, то практически все конструктивные находки опробовались вначале на «болидах» «Формулы-1» и лишь затем применялись в массовом производстве. Так же и в случае с профессиональными камерами — после того как новые идеи «приживались» на профессиональных моделях, производители внедряли их в любительскую технику.
В главе, посвященной оптической подсистеме, мы коснулись определения зеркальной камеры (SLR-камеры), то есть фотоаппарата, который позволяет пользователю визуально контролировать кадрирование, фокус и глубину резкости. Эти возможности предопределили интерес профессиональных фотографов к данной технике еще в конце 50-х годов, когда пленочные зеркальные камеры только-только появились.
Развитие электроники позволило оснастить фотоаппараты данного типа разнообразными датчиками как для автоматической фокусировки, так и для расчета экспозиции. Кроме того, повсеместно стали использоваться микропроцессоры, вычисляющие оптимальный режим съемки в сложных условиях. Современные репортажные «зеркалки» обладают настолько высоким «уровнем интеллекта», что для съемки необходимо лишь вставить пленку и нажать кнопку затвора. Этим они напоминают простейшие компакт-камеры, но только этим — качество кадров, получаемых с помощью SLR-камеры, несравненно выше. Неудивительно, что когда встал вопрос о создании полевых цифровых фотоаппаратов, техники дорогой и требующей высококлассной оптики, «умной» электроники и надежной механики, в качестве прототипов были избраны именно зеркальные аппараты.
Рис. 7.1. Основные компоненты зеркальной камеры
ПРИМЕЧАНИЕ
Пентапризма — пятиугольная (от латинского penta — пять) в сечении призма, преломляющая отраженное от зеркала фотоаппарата изображение таким образом, что ось видоискателя параллельна оси объектива. Впервые это оптическое устройство появилось в фотоаппаратах фирмы Asahi Optical. Большая популярность камер, оснащенных пентапризмой, привела к переименованию фотографического оборудования компании в Pentax.
Несмотря на относительную простоту схемы с полупрозрачной призмой, делящей световой поток на две части (по направлению в видоискатель и на ЭОП), широкого распространения она не получила. Исторически раньше появилась система с «прыгающим» зеркалом, и в многочисленных поколениях камер она была
доведена до совершенства. При этом, несмотря на большую механическую сложность и громоздкость всего узла, уборка зеркала в момент съемки исключает ослабление светового потока, падающего на ЭОП.
ПРИМЕЧАНИЕ
Байонет — крепежный узел, позволяющий быстро и без усилий (от французского baionnette — штык) подсоединить объектив к фотоаппарату. Представляет собой кольцо с пазами на корпусе камеры и кольцо с соответствующими выступами на оптике. В отличие от резьбового соединения, требующего относительно большого количества оборотов для уверенного крепления, байонет достаточно повернуть на небольшой угол для надежной фиксации. Для защиты от случайной расстыковки камера, как правило, снабжена защелкой. Подпружиненные штырьки, расположенные на объективе, упираются в ответные контакты фотоаппарата и служат для обмена данными между ними.
Именно наличие байонетного разъема для сменной оптики является отличительной чертой профессиональных цифровых фотоаппаратов, обладающих широким ассортиментом объективов для разнообразной работы — от макросъемки до длиннофокусного фотографирования. При этом пользователь со стажем может использовать весь свой оптический арсенал пленочной техники, разумеется, если он совместим с приобретаемой цифровой камерой.
Совместимость определяется, как уже было сказано, базовой моделью. Несмотря на то что многие производители «зеркалок» анонсировали свои разработки в области профессиональной цифровой фототехники, на данный момент основой для камер такого класса чаще всего служат фотоаппараты Canon и Nikon.
При выборе профессиональной камеры следует помнить о том, что в большинстве случаев размер кадра 35-мм пленки больше размера матрицы ЭОП. Это приводит к тому, что часть изображения, формируемая объективом, оказывается в буквальном смысле слова «за кадром».
Это приводит к сдвигу характеристик объектива в «длиннофокусную» область. Поэтому при выборе оптики следует учитывать коэффициент увеличения фокусного расстояния — как правило, он составляет около 1,5. Например, при установке вариообъектива 28-70 мм его рабочий диапазон составит 42-105 мм.
У этого явления есть как положительные, так и отрицательные стороны. Среди минусов — сложность работ, требующих большого угла охвата и, соответственно, короткофокусных объективов.
Поскольку оптика с фокусным расстоянием 18 мм и менее стоит очень дорого, широкоугольную (не больше 27 мм) съемку профессиональной камерой нельзя назвать дешевым удовольствием.
С другой стороны, телеобъективы стоят тоже очень дорого, кроме того, чем «длиннее» фокус, тем меньше относительное отверстие. В то же время недорогой 200-мм объектив с f/4,5 в нашем случае превращается в 300-мм. Кроме того, у 300-мм объектива диафрагма, как правило, — f/5,6, в нашем же случае она остается неизменной — f/4,5.
Следует также помнить, что любой объектив в той или иной степени страдает от кривизны поля, эффект от которой выражен размытостью снимка по краям. При использовании ЭОП с площадью меньшей, чем у кадра 35-мм пленки, наиболее искаженная часть формируемого объективом изображения не попадет на сенсор.
В общем, если учесть общую стоимость оборудования данного класса, расходы па хороший объектив нельзя назвать чрезмерными, кроме того, время жизни этого устройства при правильной эксплуатации достаточно долгое.
В ранних моделях для перевоплощения пленочной «зеркалки» в цифровую камеру достаточно было лишь удалить заднюю стенку базового фотоаппарата и установить дополнительный отсек с ЭОП и блоком хранения информации. При разработке современных образцов проводятся довольно глубокие изменения в конструкции фотоаппарата, поэтому происходит не столько переделка готового изделия, сколько создание новой модели. Разумеется, сохраняется байонет базовой камеры, видоискатель и основные управляющие органы. При этом появляются кнопки, используемые «цифровой» частью камеры, — такие как баланс белого и чувствительность по ISO. Кроме них камера, как правило, снабжается ЖК-дисплеем, интерфейсами ввода-вывода и отсеком для сменных модулей памяти. Все современные пленочные «зеркалки» насыщены электроникой и поэтому имеют батарейный отсек, тем не менее добавляемое оборудование требует дополнительного питания. Вот, в очень общих чертах, процесс создания цифровой «байонетной» камеры.
Sigma
Недорогие и надежные 35-мм «зеркалки» фирмы Sigma пользуются заслуженной популярностью.
ПРИМЕЧАНИЕ
Sigma— организованная в 1961 году, эта японская корпорация в основном специализируется на производстве объективов для камер Canon, Nikon, Minolta и Pentax. Имеет собственное производство оптического стекла SLD с минимальным уровнем рассеивания (Special Low Dispertion). Кроме того, с 1993 года фирмой выпускаются «зеркалки» собственной конструкции с байонетом Sigma, а также фотовспышки.
Скорее всего, именно сочетание невысокой цены и хорошего качества повлияли на решение разработчиков Foveon, когда они выбрали фотоаппарат Sigma SA-9 в качестве базы для создания цифровой камеры нового поколения.
Можно ли считать Sigma SD9 камерой будущего? Такое громкое определение не случайно. Несмотря на довольно скромное по меркам 2002 года разрешение — 2268x1512, Sigma SD9 вызвала интерес, сравнимый со вниманием к самым первым образцам цифровых камер.
Сенсором нового фотоаппарата была трехслойная КМОП-матри-ца Foveon F7-35X3-A25B серии ХЗ, способная регистрировать полный цветовой диапазон в каждом пикселе. Как было описано в главе «Электронно-оптические преобразователи», многослойные матрицы, к которым относится Foveon ХЗ, определяют цвет в каждом из своих элементов за счет разной глубины проникновения в кремний света с разной длиной волны.
Следует отметить, что, несмотря на все дифирамбы в адрес новой технологии, Sigma SD9 подтвердила все скептические комментарии по поводу «слоеных матриц».
Потенциальные ямы каждого из слоев пиксела обладают крайне невысокой емкостью и быстро «переполняются». Поэтому ярко освещенные объекты кадра превращаются в серые пятна. Это усугубляется тем, что антиблюминговые средства Foveon ХЗ весьма неэффективны, и при выдержках «длиннее» 1/15 серые пятна начинают расползаться вширь.
Еще одним неприятным сюрпризом явились хроматические аберрации, особенно сильно проявляющиеся при съемке с полностью открытой диафрагмой, когда попадающие под большим углом фотоны попадают в «чужой» слой и искажают цветопередачу кадра.
Фотоаппараты с улучшенной оптикой
Первоначальное отношение к любительским цифровым фотоаппаратам стоит назвать скептическим. Поэтому характеристики объективов были довольно скромными. Производители разумно считали, что при разрешении 640x480 автоматическая фокусировка и переменное фокусное расстояние — непростительная роскошь. Однако при пересечении мегапиксельного рубежа примитивная оптика заметно стала сказываться на качестве кадра, разумеется, в худшую сторону. В итоге камеры обзавелись автофокусными вариообъективами, а при достижении отметки «два мегапиксела» появились и первые светосильные объективы.
Любительские камеры
Любительские камеры
Модели начального уровня
Камеры минимальной стоимости
Камеры с вариообъективом
Сверхкомпактные камеры
Фотоаппараты с улучшенной оптикой
Светосильный объектив
Вариообъективы большой кратности
Зеркальные камеры
Пути развития
Камеры минимальной стоимости
Название этой категории говорит само за себя — входящие в нее фотоаппараты стоят не дороже 200 долларов. Их характерные черты — объектив с постоянным фокусным расстоянием, зачастую со свободным фокусом. Вследствие примитивности оптики вспышка используется очень часто, однако, поскольку вспышка тоже невысокого класса, фотографии в большинстве случаев получаются «плоскими», а глаза — «красными».
Так как объектив короткофокусный, портретная съемка будет затруднена даже при достаточном освещении. Оптимальная область применения этих камер — пейзажная съемка в солнечный день, так называемый «фотоальбом туриста». Однако при этом следует помнить, что оптика этих камер сильно подвержена дис-торсии и кривизне поля. Поэтому не стоит удивляться, что объекты, расположенные по краям кадра, загнуты и размыты.
Под стать объективу и сенсоры данных фотоаппаратов. Один, максимум два мегапиксела рассчитаны на печать кадров размером 9x12, в лучшем случае — 10x15 см. К этому следует добавить узкий динамический диапазон, а также отчетливо заметный тепловой шум и полное отсутствие каких-либо средств борьбы с ним. Совсем уж простые модели комплектуются КМОП-матрицей, которая вышеуказанными «болезнями» страдает в ярко выраженной форме.
За редким исключением, в большинстве случаев имеет смысл добавить сотню-другую долларов и приобрести модель из следующей категории.
Камеры с вариообъективом
Камеры данной категории лидируют как по ассортименту, так и по объемам продаж. Используемые в фотоаппаратах этого типа автофокусируемые вариообъективы позволяют вести как портретную, так и пейзажную съемку. Автоматика более «сообразительна», а для более точного обсчета экспозиции имеется набор специальных программ, количество которых может достигать полутора десятков. Кроме того, обеспечивается непрерывная съемка, можно настроить баланс белого, а также снимать с приоритетом диафрагмы/выдержки либо в полностью ручном режиме.
Пользователь может даже вручную указать дистанцию съемки. Ручной фокусировкой это назвать нельзя, так как камера не предоставляет практически никаких возможностей для визуальной оценки резкости. С другой стороны, процесс автофокусировки в условиях слабой освещенности зачастую затягивается. Поэтому некоторые модели (особенно в ценовой категории выше 400 долларов) снабжаются специальной лампой, подсвечивающей объект съемки для более точного определения дистанции.
Вспышки у этих моделей более мощные и «интеллектуальные», у наиболее удачных фотоаппаратов излучатель отдален от оптической оси объектива, что значительно снижает вероятность появления «красных глаз».
Используемые сенсоры могут состоять как из двух, так и из пяти мегапикселов, при этом уровень шума матрицы приемлемый, а ряд моделей оснащается системой шумоподавления по методу «темного кадра».
Спектр применения таких камер очень широкий и, как правило, полностью перекрывает потребности начинающего фотографа. Именно поэтому ряд моделей этой категории выпускается в пыле-влагозащищенном исполнении, позволяющем вести съемку в самых экстремальных условиях. Правда, за такую «всепогодность» приходится платить на 100-200 долларов больше.
Любительские камеры
Первая любительская цифровая фотокамера появилась в 1990 году. Dycam Model 1, более известная под именем Logitech FotoMan FM-1, отличалась довольно своеобразным дизайном. Вертикальная компоновка и кнопка затвора на лицевой панели не обеспечивали удобного удержания при фотографировании.
ПЗС-матрица с разрешением 376x284 позволяла вести только черно-белую съемку. Информация записывалась не во флэш-память, а в обычное ОЗУ и при разряде батарей (два элемента АА) безвозвратно пропадала. Дисплей для просмотра кадров отсутствовал, а объектив был самым что ни на есть примитивным -с постоянным фокусным расстоянием (55 мм), свободным фокусом и максимальной диафрагмой f/4,5. Тем не менее имелись вспышка и интерфейс подключения к ПК.
С той поры появился цвет, разрешение увеличилось на порядок, кадры стали храниться во флэш-памяти, а для их просмотра используется ЖК-дисплей. Ассортимент выпущенных моделей исчисляется сотнями, при этом неоднократно предпринимались попытки классификации любительских камер. Вначале решено было разделять камеры по категориям, учитывая их разрешение. Однако величина эта оказалась такой же быстрорастущей, как и быстродействие процессоров ПК. Затем фотоаппараты попытались распределять по классам согласно объему сервисных функций — управления экспозицией, режимом съемки, настройкам баланса белого и т. д. Впрочем, как и в пленочной фотографии, сейчас даже модели «для чайников» обзавелись такими возможностями, которых не было у полупрофессиональных камер раннего периода.
В итоге классификацию приходится проводить по единственному параметру, который оставался неизменным все это время, -оптической системе (то есть объективу).
Модели начального уровня
Это, пожалуй, один из самых массовых и популярных типов. Причем под термином «начальный уровень» подразумевается вовсе не цена — в рамках этого класса встречаются модели и за 100, и за 1000 долларов. И не объем функций — некоторые «мыльницы» с вариообъективом по набору режимов съемки превосходят «зеркалки» двухлетней давности. И дело даже не в степени подготовленности пользователя — фотоаппараты других категорий тоже не требуют сверхъестественных усилий для получения хороших фотографий.
Объединяющим признаком всех камер начального уровня является оптика. Это может быть и объектив типа «мышкин глаз», и трехкратный вариообъектив. В обоих случаях разработчики фотоаппарата ориентируются на определенную категорию потребителя. Подразумевается, что потенциальный пользователь, как правило, мало знаком с таким термином, как «светосила», ну а «хроматические и геометрические аберрации» для него звучат словами из шумерского языка.
Это, конечно, не значит, что камеры данной категории не в состоянии обеспечить приличного качества. Сочетание «умной» программы расчета экспозиции и хорошей вспышки способно творить чудеса в обычной ситуации. Но вот об универсальности применения этих камер говорить нельзя.
Слишком уж часто встречаются ситуации, когда пользователю приходится вспоминать старое правило фотографии «света много не бывает» и сетовать на малую светосилу объектива. Например, когда поздним вечером нет возможности использовать в качестве фона живописные развалины древнего амфитеатра. Да и ярким днем при широкоугольной съемке бочкообразные искажения превратят этот амфитеатр в современный Ледовый дворец Санкт-Петербурга.
Тем не менее для большинства пользователей вполне достаточно тех возможностей, которые предоставляют фотоаппараты этого типа. Если же попытаться провести «внутривидовую классификацию», то можно выделить три основные категории:
камеры минимальной стоимости;
камеры с вариообъективом;
сверхкомпактные камеры.
Пути развития
Довольно тяжело строить долгосрочные прогнозы, особенно для такого изменчивого направления, как любительская цифровая фототехника. Однако некоторые выводы все-таки сделать можно.
При переходе четырехмегапиксельного рубежа выяснилось, что в большинстве моделей начального уровня оптическое разрешение ниже, чем разрешение матрицы. Таким образом, дальнейшая гонка за мегапикселами для техники данной категории является «дорогой в никуда». Именно поэтому происходит всемерное насыщение этих камер разнообразными сервисными функциями, иногда нужными, иногда вызывающими недоумение.
Совершенно противоположного качества оптика зеркальных камер, резерв которой по разрешению очень и очень высок. Кроме того, если стандарт «Четыре Трети» приживется, в эту нишу непременно придут производители недорогой оптики для 35-мм «зеркалок» — Tokina, Soligor, Sigma и др.
Наиболее предсказуемое направление — модели с улучшенной оптикой. С уверенностью можно сказать, что очередное изделие концерна Sony (шести-, семи- или восьмимегапиксельная ПЗС-матрица) найдет свое применение в фотоаппаратах этой категории. Ибо покупатель персонального компьютера в массе своей выбирает мегагерцы, а покупатель цифровой фотокамеры — мегапикселы.
Сверхкомпактные камеры
Как следует из названия, основной отличительной чертой этих аппаратов являются миниатюрные габариты. Эти маленькие блестящие металлические «кирпичики» снабжены вариообъективом и по своим возможностям практически ни в чем не уступают камерам предыдущей категории.
Правда, сверхкомпактные камеры имеют и ряд минусов, вызванных как раз малыми размерами. В частности, накладывается ограничение на диаметр линз, применяемых в объективе, что вынуждает разработчиков искать компромисс между светосилой, оптическим разрешением и уровнем аберраций. К сожалению, в большинстве случаев результат поисков далеко не идеален.
Миниатюрный корпус не располагает также к использованию стандартных разъемов для подключения к ПК, ТВ-аппаратуре и источнику питания. Поэтому большинство «малюток» оснащаются комбинированными разъемами, в которых сосредоточены все интерфейсы фотоаппарата. В случае, потери кабеля пользователя ждет долгий и зачастую безрезультатный поиск этого аксессуара.
Из-за малых размеров камеры излучатель вспышки располагается близко к оси объектива, поэтому пользователь должен быть готов к частому появлению «красных глаз» в кадре. Кроме того, чтобы «втиснуться» в как можно меньшие габариты, разработчики используют в качестве элементов питания специальные литиевые аккумуляторы. Эти устройства характеризуются миниатюрными габаритами и емкостью в сочетании с непомерной ценой.
Рис. 8.5. Canon Digital IXUS 300 (разрешение 1600X1200, объектив 35-105 мм, f/2,7-f/4,7)
Да и эргономика этих фотоаппаратов оставляет желать лучшего. Ну а самым большим недостатком данной категории является цена, ведь аналогичная по характеристикам камера с обычными габаритами стоит в полтора раза дешевле.
Светосильный объектив
Термин «светосильный объектив» трактуется каждым производителем по-разному, а чаще всего под этим определением подра-зумевается вариообъектив с диапазоном фокусного расстояния 35-105 мм (в эквиваленте кадра 35-мм пленки), диафрагму которого можно открыть на f/2,0-f/2,8 в широкоугольном режиме и на f/2,5-f/3,0 в длиннофокусном.
Для человека, малознакомого с фотографическими терминами, светосильный объектив обозначает следующее — объем света, проходящий через его линзы, больше, чем в обычном объективе, поэтому при прочих равных условиях выдержка будет «короче» (то есть меньше шанс получить «сдернутый» кадр), а импульс вспышки слабее (изображение не будет «плоским»). Более того, только со светосильным объективом возможна пейзажная съемка в вечернее время.
Еще одним преимуществом новых объективов был пониженный уровень оптических аберраций, как геометрических, так и хроматических. В результате при широкоугольной съемке стены зданий по краям кадра не загибаются внутрь, а контрастно освещенные объекты не приобретают фиолетовой окантовки.
Одна из особенностей камер со светосильной оптикой — резьба вокруг объектива. Благодаря этому есть возможность установить дополнительные оптические насадки — светофильтры и конверторы. Следует отметить, что конверторные насадки определенным образом снижают интенсивность светового потока, проходящего через объектив, и именно поэтому эксплуатировать их желательно только со светосильной оптикой.
По набору сервисных функций фотоаппараты этой категории превосходят модели начального уровня. Причем не столько количественно, сколько качественно. В частности, камера может и не иметь дюжины «сюжетов», однако скорости встроенного процессора достаточно, чтобы правильно рассчитать экспозицию и без подсказок со стороны пользователя.
Диапазон матриц, используемых в камерах со светосильной оптикой, не такой широкий, как у моделей начального уровня. Дело в том, что в первую очередь новейшими сенсорами оснащаются фотоаппараты именно этого класса. Однако предыдущие модели не сходят с рынка, а делят его с новинкой не менее полугода. Следует отметить также, что среди всей любительской фототехники данная категория чаще прочих снабжается матрицами с широ-ким динамическим диапазоном и высокой чувствительностью.
Вспышки, которыми комплектуются фотоаппараты этой категории, уступают профессиональным моделям только по максимальной мощности импульса. Камер, в которых излучатель расположен рядом с объективом, практически не встречается, зато подавляющее большинство оснащено гнездом либо «башмаком» для подключения внешней вспышки.
Как показывает практика, удачный объектив может использоваться в целом ряде камер от различных производителей. Например, разработанный Canon вариообъектив (35-105 мм, f/2,0-f/2,5) применялся не только в знаменитом Power Shot G1, но и в фотоаппаратах Casio, Toshiba, Epson и Sony. Правда, в последнем случае он именовался Carl Zeiss, но это было ничем иным, как маркетинговым ходом Sony.
С другой стороны, и сама камера с хорошей оптической системой может лишь «обрастать» мегапикселами и дополнительными функциями, сохраняя как основной дизайн, так и свое «сердце» — объектив. В частности, так произошло с семейством фотоаппаратов Olympus С-2040 (два), С-3040 (три) и С-4040 (четыре мегапиксела). Во всех этих моделях использовался один и тот же корпус (с незначительными изменениями) и объектив SuperBright Zoom. Это можно перевести как «сверхсветосильный вариообъектив», впрочем, замечательные характеристики (35-105 мм, f/l,8-f/2,6) полностью соответствуют такому названию.
В последнее время обнаружилась еще одна интересная тенденция. После того как новая разработка оснащается объективом с -улучшенными характеристиками, оптика предыдущей серии используется в упрощенных моделях. Как правило, они отличаются меньшей «скорострельностью», отсутствием ряда интерфейсов (видеовыход либо внешняя вспышка), а главное — сниженной ценой. Например, модели Olympus C-3020 и С-4000, созданные в 2001 и 2002 году, используют оптическую систему камеры Olympus C-3030, выпущенной в 2000 году.
Среди всех типов любительской фототехники модели со светосильным объективом обладают наибольшей гибкостью применения. И поэтому задачи, с которыми лучше справляются другие типы камер, довольно специфичны. В первую очередь к ним относится телесъемка.
Вариообъективы большой кратности
К фототехнике с улучшенной оптикой относят также камеры, объективы которых, будучи не светосильными, имеют широкий диапазон фокусного расстояния, от шести крат и выше. Разумеется, с помощью конверторной насадки можно изменить фокусное расстояние обычной камеры. Однако при этом невозможно быстро сменить «короткий» фокус на «длинный», а именно такая задача возникает при съемке спортивных соревнований и мира дикой природы.
Обладая подавляющим превосходством в области телесъемки, фотоаппараты данного типа все-таки уступают «светосильным» моделям, когда возникает необходимость фотографировать в условиях слабого освещения. Да и уровень геометрических и хроматических аберраций у этих объективов выше.
Тем не менее конструкция оптической системы ранних моделей рассматриваемой категории поднимала цену выше 1000 долларов. Дело в том, что практически все «дальнобойные» камеры в то время снабжались сложной и дорогой системой оптической стабилизации, предназначение которой изложено в главе «Оптическая подсистема».
В настоящее время технические проблемы, связанные с возможностью «смазать» кадр при «длинном» фокусе и «длинной» выдержке, решают при помощи повышенной чувствительности ПЗС-матриц. Правда, при этом возрастает шанс испортить кадр тепловым шумом сенсора, но значительный прогресс в области технологий шумоподавления позволяет справиться и с этой неприятностью. А за счет отказа от сложной системы оптической стабилизации удается упростить камеру, уменьшить ее габариты и, что важнее, цену.
Помимо оптики конструкция «дальнобойных» фотоаппаратов содержала еще одну особенность — в роли видоискателя выступал миниатюрный ЖК-дисплей, отображавший в реальном режиме «картинку» с ПЗС-матрицы. Такое решение было вызвано тем, что обычный оптический видоискатель при большой кратности объектива представляет собой слишком сложное устройство.
Зеркальные камеры
С термином «цифровая зеркалка» чаще всего связывают профессиональные модели, разработанные на базе обычных 35-мм камер со сменной оптикой. Однако и среди любительских камер встречались модели, в которых пользователь видел в видоискателе именно то изображение, которое формировал объектив. Для всех любительских «зеркалок» характерна схема с призмой-делителем, а не «прыгающее» зеркальце, применяющееся в профессиональных моделях.
Хотя фотоаппараты данной категории разрабатывали и Sony (DSC-700/770), и альянс Pentax-Hewlett-Packard (EI-2000/ PhotoSmart C912), наиболее известные и удачные модели получались у Olympus. Впрочем, это не удивительно, учитывая тот факт, что в активе этой фирмы популярная серия пленочных «зеркалок» IS, созданных по схеме с призмой-делителем.
Как и следовало ожидать, цифровые «зеркалки» Olympus также пользовались успехом. Причем с каждой следующей моделью (С-1400, затем С-2500 и, наконец, Е10/20) возможности камер росли как по набору управляющих функций, так и по части оптики. Последние модели по своим возможностям вплотную сравнялись с недорогими профессиональными моделями. И, в конце концов, фирма Olympus решилась на довольно серьезный шаг.
Вступив в альянс с корпорацией Eastman Kodak, Olympus объявила о создании нового стандарта для цифровых «зеркалок» со сменной оптикой. В основе этого стандарта лежат спецификации на два главных узла — ПЗС-матрицу и байонет.
Согласно спецификации стандарта «Четыре Трети» (Four Thirds System), разрешение сенсора может быть каким угодно — регламентируется лишь его размер. Он должен составлять четыре трети дюйма по диагонали (17,8x13,4 мм). Таким образом, как и в случае со стандартным кадром 35-мм пленки, производитель может выпускать объектив, рассчитанный на формирование кадра именно такого размера, и не опасаться, что его товар (при достойном качестве) не будет востребован рынком.
Другой спецификацией определяется конструкция байонета. В профессиональных «зеркалках» объективы не взаимозаменяемы, так как байонет Canon не совместим с аналогичным узлом Nikon ни электрически, ни даже механически. Выгоды от стандартизации байонета очевидны — при смене камеры пользователю не придется расставаться с весьма недешевой коллекцией объективов.
Что касается реальных достижений альянса «Olydak» (Olympus+Kodak), как иногда его называют журналисты, то на данный момент есть матрица Kodak KAF-5101 СЕ с разрешением 2614х 1966 (пять мегапикселов) и прототип камеры, представленный Olympus на выставке Photokina 2002. По массогабаритным характеристикам новый аппарат близок к существующему Olympus E-20 с дополнительно установленным блоком вертикальной съемки.
Почему бы не «оставить все, как есть», тем более что размеры сенсоров новейших профессиональных камер и так совпадают с размером кадра 35-мм пленки? Дело в том, что существующая оптика, рассчитанная на формирование кадра большого размера, требует линз большого диаметра, следовательно, большей
массы, следовательно, большей стоимости. При переходе на оптику меньших размеров есть возможность уменьшить габариты — как объектива, так и камеры. Но самое главное, при этом снижается цена и обеспечивается охват гораздо большего сегмента рынка. Ведь сменная оптика — это так удобно.